《pytorch》——优化器的解析和使用

优化器简介

在 PyTorch 中,优化器(Optimizer)是用于更新模型参数以最小化损失函数的关键组件。在机器学习和深度学习领域,优化器是一个至关重要的工具,主要用于在模型训练过程中更新模型的参数,其目标是最小化损失函数。

工作原理

在这里插入图片描述

优化器的作用

  • 提高训练效率:不同的优化算法能够更有效地搜索参数空间,找到使损失函数最小的参数值,从而减少训练所需的时间和计算资源。
  • 避免局部最优解:一些优化算法,如带有动量的 SGD 或 Adam 等,能够在一定程度上避免模型陷入局部最优解,从而找到更优的全局最优解。
  • 处理不同类型的数据:对于不同的数据集和任务,不同的优化器可能会有不同的表现。选择合适的优化器可以提高模型的泛化能力和性能。

常见优化器算法和优化器

随机梯度下降(SGD):

  • 原理:随机梯度下降是最基础的优化算法。它通过计算每个小批量数据的梯度来更新模型的参数。
  • 代码示例:
import torch
import torch.optim as optim
from torch import nn

# 定义模型
model = nn.Linear(10, 1)
# 定义优化器
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
  • 参数说明:lr 是学习率,控制每次参数更新的步长;momentum 是动量参数,用于加速收敛,模拟物理中的动量概念。

Adagrad

  • 原理:Adagrad 算法根据每个参数的历史梯度平方和来调整学习率。对于经常更新的参数,它会减小学习率;对于不经常更新的参数,它会增大学习率。
  • 代码示例:
optimizer = optim.Adagrad(model.parameters(), lr=0.01)

Adadelta

  • 原理:Adadelta 是 Adagrad 的改进版本,它通过使用一个衰减的累积梯度平方和来代替 Adagrad 中的累积梯度平方和,从而避免了学习率过早衰减的问题。
  • 代码示例:
optimizer = optim.Adadelta(model.parameters(), lr=1.0)

RMSProp

  • 原理:RMSProp 也是 Adagrad 的改进算法,它通过引入一个衰减系数来控制历史梯度平方和的累积,使得学习率不会过早衰减。
  • 代码示例:
optimizer = optim.RMSProp(model.parameters(), lr=0.001, alpha=0.99)
  • 参数说明:alpha 是衰减系数,用于控制历史梯度平方和的衰减速度。

Adam

  • 原理:Adam(Adaptive Moment Estimation)结合了 Adagrad 善于处理稀疏梯度和 RMSProp 善于处理非平稳目标的优点。它计算梯度的一阶矩估计和二阶矩估计,并利用这些估计来动态调整每个参数的学习率。
  • 代码示例:
optimizer = optim.Adam(model.parameters(), lr=0.001, betas=(0.9, 0.999))
  • 参数说明:betas 是用于计算一阶矩估计和二阶矩估计的系数。

AdamW

  • 原理:AdamW 是对 Adam 的改进,主要改进在于将权重衰减(L2 正则化)从损失函数中分离出来,直接应用于优化器的更新规则中,避免了传统 Adam 中权重衰减与梯度更新的耦合问题。
  • 代码示例:
optimizer = optim.AdamW(model.parameters(), lr=0.001, weight_decay=0.01)
  • 参数说明:weight_decay 是权重衰减系数,用于控制模型参数的正则化强度。

自适应优化算法:

  • 如 Adagrad、Adadelta、RMSProp 和 Adam 等。这些算法会根据参数的不同特性自适应地调整学习率,以提高训练效率和模型性能。例如,Adam 算法结合了动量和自适应学习率的思想,在很多任务中表现出色。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/970459.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

应用层优秀的共享民宿物联网框架该怎么选?

有一说一,应用层优秀的物联网框架通常能帮助提升用户体验、提高运营效率、节能减排等等优势,很多老板也很注重这个层面的设计和打磨,那么对于选择应用层优秀的共享民宿物联网框架时,大家可以从哪几个关键因素进行考量呢&#xff1…

DeepSeek自动化写作软件

DeepSeek写作软件的三大核心功能 对于内容创作者来说,写作不仅是表达思想的过程,更是一项需要投入大量时间和精力的任务。面对日益增长的内容需求,写作效率低下、内容质量不高等问题,常常让创作者感到焦虑。而 DeepSeek 写作软件…

CPT205 计算机图形学 OpenGL 3D实践(CW2)

文章目录 1. 介绍2. 设计3. 准备阶段4. 角色构建5. 场景构建6. 交互部分6.1 键盘交互6.2 鼠标交互6.3 鼠标点击出多级菜单进行交互 7. 缺点与问题7.1 程序bug7.2 游戏乐趣不足7.3 画面不够好看 8. 完整代码 1. 介绍 前面已经分享过了关于CPT205的CW1的2D作业,这次C…

Matlab离线安装硬件支持包的方法

想安装支持树莓派的包,但是发现通过matlab安装需要续订维护服务 可以通过离线的方式安装。 1. 下载SupportSoftwareDownloader Support Software Downloader - MATLAB & Simulink 登录账号 选择对应的版本 2. 选择要安装的包 3.将下载的包copy到安装目录下 …

在蓝耘平台使用4090显卡跑一下深度学习算法-教学文章

本次项目展示了如何使用线性回归模型完成房价预测。尽管线性回归简单有效,但在实际问题中,特征与目标变量可能呈现复杂的非线性关系。这时,可以考虑改用其他模型,如决策树、随机森林或深度学习。 文章目录 前言1. 数据集成与管理2…

springboot整合mybatis-plus(保姆教学) 及搭建项目

一、Spring整合MyBatis (1)将MyBatis的DataSource交给Spring IoC容器创建并管理,使用第三方数据库连接池(Druid,C3P0等)代替MyBatis内置的数据库连接池 (2)将MyBatis的SqlSessionFactory交给Spring IoC容器创建并管理,使用spring-mybatis整…

景联文科技:以精准标注赋能AI未来,打造高质量数据基石

在人工智能蓬勃发展的时代,数据已成为驱动技术革新的核心燃料,而高质量的数据标注则是让AI模型从“感知”走向“认知”的关键桥梁。作为深耕数据服务领域的创新者,景联文科技始终以“精准、高效、安全”为核心理念,为全球AI企业提…

云创智城充电系统:基于 SpringCloud 的高可用、可扩展架构详解-多租户、多协议兼容、分账与互联互通功能实现

在新能源汽车越来越普及的今天,充电基础设施的管理和运营变得越来越重要。云创智城充电系统,就像一个超级智能管家,为新能源充电带来了全新的解决方案,让充电这件事变得更方便、更高效、更安全。 一、厉害的技术架构,让…

LlamaFactory可视化模型微调-Deepseek模型微调+CUDA Toolkit+cuDNN安装

LlamaFactory https://llamafactory.readthedocs.io/zh-cn/latest/ 安装 必须保证版本匹配,否则到训练时,找不到gpu cuda。 否则需要重装。下面图片仅供参考。因为cuda12.8装了没法用,重新搞12.6 cudacudnnpytorch12.69.612.6最新&#xf…

Django 美化使用ModelForm的输入框

在初次使用ModelForm时&#xff0c;我的html文件代码如下&#xff0c;主要内容是显示一个卡片式表单&#xff0c;通过循环遍历 form 对象动态生成表单字段 {% extends layout.html %}{% block content %} <div class"container"><div class"c1"&g…

深度学习框架探秘|Keras:深度学习的魔法钥匙

一、引言&#xff1a;深度学习浪潮中的 Keras 前面的文章我们探秘了深度学习框架中的两大明星框架 —— TensorFlow 和 PyTorch 以及 两大框架的对比 在深度学习的众多框架中&#xff0c;还有一款框架备受开发者们的喜爱 —— Keras 。它就像是一位贴心的助手&#xff0c;为我…

深入解析SVG图片原理:从基础到高级应用

文章目录 引言一、SVG基础概念1.1 什么是SVG&#xff1f;1.2 SVG的优势 二、SVG的基本结构2.1 SVG文档结构2.2 常用SVG元素 三、SVG的工作原理3.1 坐标系与变换3.2 路径与曲线3.3 渐变与滤镜 四、SVG的高级应用4.1 动画与交互4.2 数据可视化4.3 响应式设计 五、SVG的优化与性能…

开源语音克隆项目 OpenVoice V2 本地部署

#本机环境 WIN11 I5 GPU 4060ti 16G 内存 32G #开始 git clone https://github.com/myshell-ai/OpenVoice.git conda create -n opvenv python3.9 -y conda activate opvenv pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/…

CANopen 基础

CANopen 是基于控制局域网络&#xff08;CAN&#xff09;开发的一种高层通信协议&#xff0c;广泛应用于工业自动化和嵌入式系统。它通过实现多种设备之间的互操作性&#xff0c;确保了数据传输的高效和可靠性。CANopen 协议在 CAN2.0A 基础上定义了物理层、数据链路层、传输层…

尚硅谷课程【笔记】——大数据之Hadoop【一】

课程视频链接&#xff1a;尚硅谷Hadoop3.x教程 一、大数据概论 1&#xff09;大数据概念 大数据&#xff08;Big Data&#xff09;&#xff1a;指无法再一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合&#xff0c;是需要新处理模式才能具有更强的决策力、洞察发…

海康摄像头IPV6模式,手动,自动,路由公告

海康摄像头DS-2DC7220IW-A 网络设置中的IPv6配置选项。IPv6是互联网协议&#xff08;IP&#xff09;的第六版&#xff0c;用于替代IPv4&#xff0c;提供更多的IP地址和改进的网络功能。图片中的选项允许用户选择如何配置设备的IPv6网络连接&#xff1a; 手动&#xff1a;用户可…

CAS单点登录(第7版)22.中断通知

如有疑问&#xff0c;请看视频&#xff1a;CAS单点登录&#xff08;第7版&#xff09; 中断通知 概述 认证中断 CAS 能够暂停和中断身份验证流程以访问外部服务和资源&#xff0c;查询状态和设置&#xff0c;然后指示 CAS 应如何管理和控制 SSO 会话。中断服务能够向用户显示…

SQLMesh 系列教程4- 详解模型特点及模型类型

SQLMesh 作为一款强大的数据建模工具&#xff0c;以其灵活的模型设计和高效的增量处理能力脱颖而出。本文将详细介绍 SQLMesh 模型的特点和类型&#xff0c;帮助读者快速了解其强大功能。我们将深入探讨不同模型类型&#xff08;如增量模型、全量模型、SCD Type 2 等&#xff0…

遵循规则:利用大语言模型进行视频异常检测的推理

文章目录 速览摘要01 引言02 相关工作视频异常检测大语言模型 03 归纳3.1 视觉感知3.2 规则生成Normal and Anomaly &#xff08;正常与异常&#xff09;Abstract and Concrete &#xff08;抽象与具体&#xff09;Human and Environment &#xff08;人类与环境&#xff09; 3…

ISO9001| 分发受控号的详细说明及其管理方法 | QM-001/Rev. 01/002 (2023-10-15)

文章目录 引言I 分发受控号的详细说明及其管理方法1. 分发受控号的作用2. 分发受控号的组成3. 分发受控文件的管理流程4. 分发受控文件的管理工具5. 分发受控文件的示例表格6. ISO 9001 对文件控制的要求II 反例:各部门分发受控号III 常见问题引言 在质量管理体系(如 ISO 900…