1-kafka服务端之延时操作前传--时间轮

文章目录

  • 背景
  • 时间轮
  • 层级时间轮
  • 时间轮降级
  • kafka中的时间轮
  • kafka如何进行时间轮运行

背景

Kafka中存在大量的延时操作,比如延时生产、延时拉取和延时删除等。Kafka并没有使用JDK自带的Timer或DelayQueue来实现延时的功能,而是基于时间轮的概念自定义实现了一个用于延时功能的定时器(SystemTimer)。JDK中Timer和DelayQueue的插入和删除操作的平均时间复杂度为O(nlogn)并不能满足Kafka的高性能要求,而基于时间轮可以将插入和删除操作的时间复杂度都降为O(1)。时间轮的应用并非Kafka独有,其应用场景还有很多,在Netty Akka、Quartz、ZooKeeper等组件中都存在时间轮的踪影。

时间轮

如图所示,Kafka中的时间轮(Timingwheel)是一个存储定时任务的环形队列,底层采用数组实现,数组中的每个元素可以存放一个定时任务列表(TimerTaskList)。TimerTaskList是一个环形的双向链表,链表中的每一项表示的都是定时任务项(TimerTaskEntry),其中封装了真正的定时任务(TimerTask)。
在这里插入图片描述

时间轮由多个时间格组成,每个时间格代表当前时间轮的基本时间跨度(tickMs)。时间轮的时间格个数是固定的,可用wheelSize来表示,那么整个时间轮的总体时间跨度(interval)可以通过公式tickMs×wheelSize计算得出。时间轮还有一个表盘指针(currentTime),用来表示时间轮当前所处的时间,currentTime是tickMs的整数倍。currentTime可以将整个时间轮划分为到期部分和未到期部分,currentTime当前指向的时间格也属于到期部分,表示刚好到期,需要处理此时间格所对应的TimerTaskList中的所有任务。

若时间轮的tickMs为1ms且wheelSize等于20,那么可以计算得出总体时间跨度interval为20ms。初始情况下表盘指针currentTime指向时间格0,此时有一个定时为2ms的任务插进来会存放到时间格为2的TimerTaskList中。随着时间的不断推移,指针currentTme不断向前推进,过了2ms之后,当到达时间格2时,就需要将时间格2对应的TimeTaskList中的任务进行相应的到期操作。此时若又有一个定时为8ms的任务插进来,则会存放到时间格10中,currentTime再过8ms后会指向时间格10。如果同时有一个定时为19ms的任务插进来怎么办?

新来的TimerTaskEntry会复用原来的TimerTaskList,所以它会插入原本已经到期的时间格1。总之,整个时间轮的总体跨度是不变的,随着指针currentTime的不断推进,当前时间轮所能处理的时间段也在不断后移,总体时间范围在currenttTime 和 currentTime+interval 之间。

层级时间轮

如果此时有一个定时为350ms的任务该如何处理?直接扩充wheelSize的大小?Kafka中不乏几万甚至几十万毫秒的定时任务,这个wheelSize的扩充没有底线,就算将所有的定时任务的到期时间都设定一个上限,比如100万毫秒,那么这个wheelSize为100万毫秒的时间轮不仅占用很大的内存空间,而且也会拉低效率。Kafka为此引入了层级时间轮的概念,当任务的到期时间超过了当前时间轮所表示的时间范围时,就会尝试添加到上层时间轮中。

如图所示,复用之前的案例,第一层的时间轮tickMslms、wheelSize=20、interval=20ms。第二层的时间轮的tickMs为第一层时间轮的interval,即20ms。每一层时间轮的wheelSize是固定的,都是20,那么第二层的时间轮的总体时间跨度interval为400ms。以此类推,这个400ms也是第三层的tickMs的大小,第三层的时间轮的总体时间跨度为8000ms。
在这里插入图片描述

时间轮降级

对于之前所说的350ms的定时任务,显然第一层时间轮不能满足条件,所以就升级到第二层时间轮中,最终被插入第二层时间轮中时间格17所对应的TimerTaskList。如果此时又有一个定时为450ms的任务,那么显然第二层时间轮也无法满足条件,所以又升级到第三层时间轮中最终被插入第三层时间轮中时间格1的TimerTaskList。注意到在到期时间为[400ms800ms)区间内的多个任务(比如446ms、455ms和473ms的定时任务)都会被放入第三层时间轮的时间格1,时间格1对应的TimerTaskList的超时时间为400ms。随着时间的流逝,当此TimerTaskList到期之时,原本定时为450ms的任务还剩下50ms的时间,还不能执行这个任务的到期操作。这里就有一个时间轮降级的操作,会将这个剩余时间为50ms的定时任务重新提交到层级时间轮中,此时第一层时间轮的总体时间跨度不够,而第二层足够,所以该任务被放到第二层时间轮到期时间为40ms,60ms)的时间格中再经历40ms之后,此时这个任务又被“察觉”,不过还剩余10ms,还是不能立即执行到期操作。所以还要再有一次时间轮的降级,此任务被添加到第一层时间轮到期时间为[10ms,11ms)的时间格中,之后再经历10ms后,此任务真正到期,最终执行相应的到期操作。

设计源于生活。我们常见的钟表就是一种具有三层结构的时间轮,第一层时间轮
tickMs=lms、wheelSize=60、interval=lmin,此为秒钟:第二层tickMs=lmin、wheelSize-60、interval=lhour,此为分钟;第三层tickMs=lhour、wheelSize-12、interval=l2hours,此为时钟。

kafka中的时间轮

在Kafka中,第一层时间轮的参数同上面的案例一样:ttickMs=lms、wheelSize-20、interval=20ms,各个层级的wheelSize也固定为20,所以各个层级的tickMs和interval也可以相应地推算出来。Kafka在具体实现时间轮Timingwheel时还有一些小细节:

  • TimingWheel在创建的时候以当前系统时间为第一层时间轮的起始时间JCstartMs)这里的当前系统时间并没有简单地调用System.currentTimeMillisO,而是调用了Time.SYSTEM.hiResClockMs,这是因为currentTimeMillisO方法的时间精度依赖于操作系统的具体实现,有些操作系统下并不能达到毫秒级的精度,而Time.SYSTEM.hiResClockMs实质上采用了System.nanoTime(/1000.000来将精度调整到毫秒级。

  • Timingwheel中的每个双向环形链表TimerTaskList都会有一个哨兵节(sentinel),引入哨兵节点可以简化边界条件。哨兵节点也称为哑元节点(dummynode),它是一个附加的链表节点,该节点作为第一个节点,它的值域中并不存储任何东西,只是为了操作的方使而引入的。如果一个链表有哨兵节点,那么线性表的第一个元素应该是链表的第二个节点。(典型的链表数据结构实现)

  • 除了第一层时间轮,其余高层时间轮的起始时间(startMs)都设置为创建此层时间轮时前面第一轮的currentTime。每一层的currentTime都必须是tickMs的整数倍,如果不满足则会将currentTime修剪为tickMs的整数倍,以此与时间轮中的时间格的到期时间范围对应起来。修剪方法为:currentTimestartMs= startMs -(startMs % tickMs)。 currentTime会随着时间推移而推进,但不会改变为tickMs的整数倍的既定事实。若某一时刻的时间为timeMs,那么此时时间轮的currentTime
    =timeMs-(timeMs%tickMs),时间每推进一次,每个层级的时间轮的currentTime都会依据此公式执行推进。

  • Kafka中的定时器只需持有Timingwheel的第一层时间轮的引用,并不会直接持有其他高层的时间轮,但每一层时间轮都会有一个引用(overfowwheel)指向更高一层的应用,以此层级调用可以实现定时器间接持有各个层级时间轮的引用。

kafka如何进行时间轮运行

上面我们说过“随着时间的流逝”或“随着时间的推移”,那么在Kafka中到底是怎么推进时间的呢?类似采用JDK中的scheduleAtFixedRate来每秒推进时间轮?显然这样并不合理,Timingwheel1也失去了大部分意义。

Kafka中的定时器借了JDK中的DelayQueue来协助推进时间轮。具体做法是对于每个使用到的TimerTaskList者都加入DelayQueue,每个用到的TimerTaskList”特指非哨兵节点的定时任务项TimerTaskEntry对应的TimerTaskListoDelayQueue会根据TimerTaskList对应的超时时间expiration来排序,最短expiration的TimerTaskList会被排在DelayOueue的队头。Kafka中会有一个线程来获取DelayQueue中到期的任务列表,有意思的是这个线程所对应的名称叫作“ExpiredOperationReaper”,可以直译为“过期操作收割机”。当“收割机”线程获取DelayQueue中超时的任务列表TimerTaskList之后,既可以根据TimerTaskList的expiration来推进时间轮的时间,也可以就获取的TimerTaskList执行相应的操作,对里面的TimerTaskEntry该执行过期操作的就执行过期操作,该降级时间轮的就降级时间轮。

看到这里或许会感到困惑,开头明确指明的DelayQueue不适合Kafka这种高性能要求的定时任务,为何这里还要引入DelayQueue呢?注意对定时任务项TimerTaskEntry的插入和删除操作而言,Timingwheel时间复杂度为0(I),性能高出DelayQueue很多,如果直接将TimerTaskEntry插入DelayQueue,那么性能显然难以支撑。就算我们根据一定的规则将若干TimerTaskEntry划分到TimerTaskList这个组中,然后将TimerTaskList插入DelayQueue,如果在TimerTaskList中又要多添加一个TimerTaskEntry时该如何处理呢?对DelayQueue而言,这类操作显然变得力不从心。

到这里可以发现,Kafka中的Timingwheel专门用来执行插入和删除TimerTaskEntry的操作,而DelayQueue专门负责时间推进的任务。试想一下,DelayQueuee中的第一个超时任务列表的expiration为200ms,第二个超时任务为840ms,这里获取DelayQueue的队头只需要O(1)的时间复杂度(获取之后DelayQueue内部才会再次切换出新的队头)。如果采用每秒定时推进,那么获取第一个超时的任务列表时执行的200次推进中有199次属于“空推进”,而获取第二个超时任务时又需要执行639次“空推进”,这样会无故空耗机器的性能资源,这里采用DelayQueue来辅助以少量空间换时间,从而做到了“精准推进”。Kafka中的定时器真可谓“知人善用”,用Timingwheel做最擅长的任务添加和删除操作,而用DelayQueue做最擅长的时间推进工作,两者相辅相成。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/965716.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Java 注解使用教程

简介 Java 1.5 引入了注解,现在它在 Java EE 框架(如 Hibernate、Jersey 和 Spring )中被大量使用。Java 注释是该语言的一个强大特性,用于向 Java 代码中添加元数据。它们不直接影响程序逻辑,但可以由工具、库或框架…

第17章 读写锁分离设计模式(Java高并发编程详解:多线程与系统设计)

1.场景描述 对资源的访问一般包括两种类型的动作——读和写(更新、删除、增加等资源会发生变化的动作),如果多个线程在某个时刻都在进行资源的读操作,虽然有资源的竞争,但是这种竞争不足以引起数据不一致的情况发生,那么这个时候…

强化学习 DAY1:什么是 RL、马尔科夫决策、贝尔曼方程

第一部分 RL基础:什么是RL与MRP、MDP 1.1 入门强化学习所需掌握的基本概念 1.1.1 什么是强化学习:依据策略执行动作-感知状态-得到奖励 强化学习里面的概念、公式,相比ML/DL特别多,初学者刚学RL时,很容易被接连不断…

【STM32系列】利用MATLAB配合ARM-DSP库设计FIR数字滤波器(保姆级教程)

ps.源码放在最后面 设计IIR数字滤波器可以看这里:利用MATLAB配合ARM-DSP库设计IIR数字滤波器(保姆级教程) 前言 本篇文章将介绍如何利用MATLAB与STM32的ARM-DSP库相结合,简明易懂地实现FIR低通滤波器的设计与应用。文章重点不在…

DeepSeek-R1 本地电脑部署 Windows系统 【轻松简易】

本文分享在自己的本地电脑部署 DeepSeek,而且轻松简易,快速上手。 这里借助Ollama工具,在Windows系统中进行大模型部署~ 1、安装Ollama 来到官网地址:Download Ollama on macOS 点击“Download for Windows”下载安装包&#x…

Llama最新开源大模型Llama3.1

Meta公司于2024年7月23日发布了最新的开源大模型Llama 3.1,这是其在大语言模型领域的重要进展。以下是关于Llama 3.1的详细介绍: 参数规模与训练数据 Llama 3.1拥有4050亿(405B)参数,是目前开源领域中参数规模最大的…

Linux之安装docker

一、检查版本和内核是否合格 Docker支持64位版本的CentOS 7和CentOS 8及更高版本,它要求Linux内核版本不低于3.10。 检查版本 cat /etc/redhat-release检查内核 uname -r二、Docker的安装 1、自动安装 Docker官方和国内daocloud都提供了一键安装的脚本&#x…

2022年全国职业院校技能大赛网络系统管理赛项模块A:网络构建(样题3)-网络部分解析-附详细代码

目录 附录1:拓扑图 附录2:地址规划表 1.SW1 2.SW2 3.SW3 4.SW4 5.SW5 6.SW6 7.SW7 8.R1 9.R2 10.R3 11.AC1 12.AC2 13.AP2 14.AP3 15.EG1 16.EG2 附录1:拓扑图 附录2:地址规划表 设备

Vim跳转文件及文件行结束符EOL

跳转文件 gf 从当前窗口打开那个文件的内容,操作方式:让光标停在文件名上,输入gf。 Ctrlo 从打开的文件返回之前的窗口 Ctrlwf 可以在分割的窗口打开跳转的文件,不过在我的实验不是次次都成功。 统一行尾格式 文本文件里存放的…

《Angular之image loading 404》

前言: 千锤万凿出深山,烈火焚烧若等闲。 正文: 一。问题描述 页面加载图片,报错404 二。问题定位 页面需要加载图片,本地开发写成硬编码的形式请求图片资源: 然而部署到服务器上报错404 三。解决方案 正确…

Windows Docker笔记-Docker容器操作

在文章《Windows Docker笔记-Docker拉取镜像》中,已经拉取成功了ubuntu镜像,本章来讲解如何通过镜像来创建容器并运行容器。 这里再类比一下,加深理解,比如,我们现在想开一个玩具厂,我们的最终目的肯定是想…

upload-labs安装与配置

前言 作者进行upload-labs靶场练习时,在环境上出了很多问题,吃了很多苦头,甚至改了很多配置也没有成功。 upload-labs很多操作都是旧时代的产物了,配置普遍都比较老,比如PHP版本用5.2.17(还有中间件等&am…

(2025|ICLR,音频 LLM,蒸馏/ALLD,跨模态学习,语音质量评估,MOS)音频 LLM 可作为描述性语音质量评估器

Audio Large Language Models Can Be Descriptive Speech Quality Evaluators 目录 1. 概述 2. 研究背景与动机 3. 方法 3.1 语音质量评估数据集 3.2 ALLD 对齐策略 4. 实验结果分析 4.1 MOS 评分预测(数值评估) 4.2 迁移能力(在不同…

深入理解linux中的文件(下)

目录 一、语言级缓冲区和内核级缓冲区 二、C语音中的FILE* fp fopen(“./file.txt”,"w"): 四、理解磁盘结构: 物理结构 逻辑结构 五、未被打开的文件: 六、更加深入理解inode编号怎么找到文件: 七、对路径结构进行…

零基础Vue入门6——Vue router

本节重点: 路由定义路由跳转 前面几节学习的都是单页面的功能(都在专栏里面https://blog.csdn.net/zhanggongzichu/category_12883540.html),涉及到项目研发都是有很多页面的,这里就需要用到路由(vue route…

京准:NTP卫星时钟服务器对于DeepSeek安全的重要性

京准:NTP卫星时钟服务器对于DeepSeek安全的重要性 京准:NTP卫星时钟服务器对于DeepSeek安全的重要性 在网络安全领域,分布式拒绝服务(DDoS)攻击一直是企业和网络服务商面临的重大威胁之一。随着攻击技术的不断演化…

网络计算机的五个组成部分

单个计算机是无法进行通信的。所以需要借助网络。 下面介绍一些在网络里常见的设备。 一、服务器 服务器是在网络环境中提供计算能力并运行软件应用程序的特定IT设备 它在网络中为其他客户机(如个人计算机、智能手机、ATM机等终端设备)提供计算或者应用…

MATLAB实现单层竞争神经网络数据分类

一.单层竞争神经网络介绍 单层竞争神经网络(Single-Layer Competitive Neural Network)是一种基于竞争学习的神经网络模型,主要用于数据分类和模式识别。其核心思想是通过神经元之间的竞争机制,使得网络能够自动学习输入数据的特…

【漫画机器学习】082.岭回归(或脊回归)中的α值(alpha in ridge regression)

岭回归(Ridge Regression)中的 α 值 岭回归(Ridge Regression)是一种 带有 L2​ 正则化 的线性回归方法,用于处理多重共线性(Multicollinearity)问题,提高模型的泛化能力。其中&am…

网络安全 | 零信任架构:重构安全防线的未来趋势

网络安全 | 零信任架构:重构安全防线的未来趋势 一、前言二、零信任架构的核心概念与原理2.1 核心概念2.2 原理 三、零信任架构的关键技术组件3.1 身份管理与认证系统3.2 授权与访问控制系统3.3 网络与安全监测系统3.4 加密与数据保护技术 四、零信任架构与传统安全…