STM32 对射式红外传感器配置

这次用的是STM32F103的开发板(这里面的exti.c文件没有how to use this driver 配置说明)

对射式红外传感器

由一个红外发光二极管和NPN光电三极管组成,M3固定安装孔,有输出状态指示灯,输出高电平灯灭,输出低电平灯亮。有遮挡,输出高电平。无遮挡,输出低电平。使用3.3-5VDC 宽电压LM393比较器输出,信号干净,波形好,驱动能力强,超过15mA。输出形式:数字开关量输出(0和1)。广泛用于电机转速检测,脉冲计数,位置限位等。

引脚:

VCC:接电源正极3.3V-5V

GND:接电源负极

DO:TTL开关信号输出

AO:此模块不起作用

操作说明:

1、接好VCC和GND,模块电源指示灯会亮
2、模块槽中无遮挡时,接收管导通,模块DO输出低电平,开关指示灯亮;遮挡时,DO输出高电平,开关指示灯灭。
3、模块DO可与继电器相连,组成限位开关等功能,也可以与有源蜂鸣器模块相连,组成报警器。
4、DO输出接口可以与单片机10口直接相连,一般接外部中断,检测传感器是否有遮档,如用电机码盘则可检测电机的转速。

原理:

测距离: 测速传感器输出为脉冲信号,一个脉冲中断一次;红外射线导通的时候是低电平,所以我们设置中断为低电平触法模式。一般码盘上有整数格子,无论是多少格其实原理一样,例如10格码盘,也就是有10个空格子,电机转一圈后便是射线导通10次,外部低电平触法10次;安装上面的思路,我们的测速传感器就可以发挥出效果了,我们知道一圈就有10个中断,于是我们计算中断次数,得到的总次数除于10也就是电机转动次数了,然后按照轮子的周长,计算轮子一圈是多长,就可以推算出小车已经跑多远了。

测速度: 按照测距离的思路,我们用一个MCU定时器计算,1秒内接收多少个外部中断,例如一秒内接收了20个外部中断,我们就可以判断小车速度为1秒小车轮子转两圈,然后再计算出小车轮子的周长,就可得知小车1秒行驶的速度。

接线图:

代码配置:

分为GPIO配置、中断线与GPIO引脚的连接、EXTI配置、NVIC配置(与上一章的按键中断一样)

EXTI函数解析:

//调用它,就可以把EXTI的配置都清除,恢复成上电的默认的状态
void EXTI_DeInit(void);

//调用这个函数,就可以根据这个结构体里的参数配置EXTI外设,初始化EXTI要用到这个函数
void EXTI_Init(EXTI_InitTypeDef* EXTI_InitStruct);

//调用这个函数,可以把参数传递的结构体变量赋一个默认值
void EXTI_StructInit(EXTI_InitTypeDef* EXTI_InitStruct);

//这个函数是用来软件触发外部中断的,调用这个函数,参数给一个指定的中断线,就能软件触发一次外部中断
void EXTI_GenerateSWInterrupt(uint32_t EXTI_Line);

在外设运行的过程中,会产生一些状态标志位   比如外部中断来了,会有一个挂起的寄存器置了一个标志位,对于其他外设,如串口收到数据,会置标志位,定时器时间到也会置标志位,这些标志位都是放在状态寄存器的,当程序想要看这些标志位时,就会用到这四个函数

FlagStatus EXTI_GetFlagStatus(uint32_t EXTI_Line);//可以获取指定的标志位是否被置1

void EXTI_ClearFlag(uint32_t EXTI_Line);//可以对置1的标志位进行清除

//在中断函数里,如果你想查看标志位和清除标志位,用下面两个函数
ITStatus EXTI_GetITStatus(uint32_t EXTI_Line);//获取中断标志位是否被置1

void EXTI_ClearITPendingBit(uint32_t EXTI_Line);//清除中断挂起标志位

总结:如果想要在主程序里查看和清除标志位,就用上面两个函数。

           如果想要在中断函数里查看和清除标志位,就用下面两个函数。

NVIC函数解析:

//这个函数是用来中断分组的,参数是中断分组的方式
void NVIC_PriorityGroupConfig(uint32_t NVIC_PriorityGroup);

//根据结构体里面指定的参数初始化NVIC
void NVIC_Init(NVIC_InitTypeDef* NVIC_InitStruct);

//设置中断向量表
void NVIC_SetVectorTable(uint32_t NVIC_VectTab, uint32_t Offset);

//系统低功耗配置
void NVIC_SystemLPConfig(uint8_t LowPowerMode, FunctionalState NewState);

代码:

void CountSensor_Init(void)
{
	//------------------------定义结构体变量-----------------------------------
	
	GPIO_InitTypeDef GPIO_InitStructure;								//定义GPIO结构体变量
	EXTI_InitTypeDef EXTI_InitStructure;								//定义EXTI结构体变量
	NVIC_InitTypeDef NVIC_InitStructure;								//定义NVIC结构体变量
	
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);//开启GPIO的时钟
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO,ENABLE);	//开启AFIO的时钟
	
	//---------------------GPIO配置--------------------------------------
	
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;			//模式选择上拉输入
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_14;   			//配置引脚
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;       //速率
	GPIO_Init(GPIOB,&GPIO_InitStructure);	                //GPIO初始化
	
	//---------------------GPIO配置--------------------------------------
	
	GPIO_EXTILineConfig(GPIO_PortSourceGPIOB,GPIO_PinSource14);//将中断线与GPIO引脚连接
	//---------------------EXTI配置--------------------------------------
	
	EXTI_InitStructure.EXTI_Line = EXTI_Line14; 					//配置中断线
	EXTI_InitStructure.EXTI_LineCmd =  ENABLE;  					//中断使能
	EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt; 	        //选择中断模式
	EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Falling;         //下降沿触发
	EXTI_Init(&EXTI_InitStructure);
	
	//---------------------EXTI配置--------------------------------------
	
	NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);//中断分组,这里放到模块函数里了,一般情况放在主函数第一行(如上一章按键中断)
	
	//---------------------NVIC配置--------------------------------------
	
	NVIC_InitStructure.NVIC_IRQChannel = EXTI15_10_IRQn;				//选择中断通道
	NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;					    //使能中断通道
	NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;		    //抢占优先级配置
	NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;					//响应优先级配置
	
	NVIC_Init(&NVIC_InitStructure);
	
	//---------------------NVIC配置--------------------------------------
	
}

中断函数:

uint16_t CountSensor_Count;
//中断函数
void EXTI15_10_IRQHandler(void)
{
	//判断中断标志位是否为 1 EXTI_GetITStatus的返回值为 SET(1)  或者RESET(0)
	if(EXTI_GetITStatus(EXTI_Line14) == SET)
	{
		//判断电平,以免发生抖动
		if(GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_14) == 0)
		{
		CountSensor_Count++;
		}
		//中断标志位置1,程序就会跳转到中断函数,
		//如果不清除中断标志位,就会一直申请中断,这样就会不断响应中断,执行中断函数,
		//程序就会卡死在中断函数里,所以每次中断程序结束后,都应该清除一下中断标志位
		EXTI_ClearITPendingBit(EXTI_Line14);
		
	}
	
}

//返回值
uint16_t CountSensor_Get(void)
{
	return CountSensor_Count;
}

主函数:

功能:挡住传感器模块槽,OLDE显示数字变化+1

#include "CountSensor.h"
int main(void)
{
	LED_Init();
	OLED_Init();
	CountSensor_Init();
	OLED_ShowString(1, 1, "Count:");
	while(1)
    {
	
	
	    OLED_ShowNum(1, 7, CountSensor_Get(),5);

    }	
	
}


 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/962310.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【数据结构】(2)时间、空间复杂度

一、衡量算法好坏的指标 时间复杂度衡量算法的运行速度,空间复杂度衡量算法所需的额外空间。这些指标,是某场景中选择使用哪种数据结构和算法的依据。如今,计算机的存储器已经变得容易获得,所以不再太关注空间复杂度。 二、渐进表…

FBX SDK的使用:基础知识

Windows环境配置 FBX SDK安装后,目录下有三个文件夹: include 头文件lib 编译的二进制库,根据你项目的配置去包含相应的库samples 官方使用案列 动态链接 libfbxsdk.dll, libfbxsdk.lib是动态库,需要在配置属性->C/C->预…

Ansible自动化运维实战--yaml的使用和配置(7/8)

文章目录 一、YAML 基本语法1.1. 缩进1.2. 注释1.3. 列表1.4. 字典 二、Ansible 中 YAML 的应用2.1. Ansible 剧本(Playbooks)2.2. 变量定义2.3. 角色(Roles)2.4. Inventory 文件2.5. 数据类型2.6. 引用变量 在 Ansible 里&#x…

springboot集成钉钉,发送钉钉日报

目录 1.说明 2.示例 3.总结 1.说明 学习地图 - 钉钉开放平台 在钉钉开放文档中可以查看有关日志相关的api,主要用到以下几个api: ①获取模板详情 ②获取用户发送日志的概要信息 ③获取日志接收人员列表 ④创建日志 发送日志时需要根据模板规定日志…

Node.js下载安装及环境配置教程 (详细版)

Node.js:是一个基于 Chrome V8 引擎的 JavaScript 运行时,用于构建可扩展的网络应用程序。Node.js 使用事件驱动、非阻塞 I/O 模型,使其非常适合构建实时应用程序。 Node.js 提供了一种轻量、高效、可扩展的方式来构建网络应用程序&#xff0…

ProfiNet转CANopen应用于汽车总装生产线输送设备ProfiNet与草棚CANopen质量检测系统

ProfiNet转CANopen协议转换网关模块,广泛应用于汽车行业。可替代NT 100-RE-CO和AB7658/7307产品功能 项目概述 在汽车总装生产线的末尾环节,汽车总装生产线输送设备起着关键的搬运作用,其基于 ProfiNet 协议运行,精准控制车辆在各…

「全网最细 + 实战源码案例」设计模式——桥接模式

核心思想 桥接模式(Bridge Pattern)是一种结构型设计模式,将抽象部分与其实现部分分离,使它们可以独立变化。降低代码耦合度,避免类爆炸,提高代码的可扩展性。 结构 1. Implementation(实现类…

Attention--人工智能领域的核心技术

1. Attention 的全称与基本概念 在人工智能(Artificial Intelligence,AI)领域,Attention 机制的全称是 Attention Mechanism(注意力机制)。它是一种能够动态分配计算资源,使模型在处理输入数据…

DeepSeek能执行程序吗?

1. 前言 大过年的,继续蹭DeepSeek的热点,前面考察了DeepSeek能否进行推理(DeekSeek能否进行逻辑推理),其实似乎没有结论,因为还没有到上难度,DeepSeek似乎就纠结在一些与推理无关的事情上了&am…

5.3.2 软件设计原则

文章目录 抽象模块化信息隐蔽与独立性衡量 软件设计原则:抽象、模块化、信息隐蔽。 抽象 抽象是抽出事物本质的共同特性。过程抽象是指将一个明确定义功能的操作当作单个实体看待。数据抽象是对数据的类型、操作、取值范围进行定义,然后通过这些操作对数…

STM32 TIM编码器接口测速

编码器接口简介: Encoder Interface 编码器接口 编码器接口可接收增量(正交)编码器的信号,根据编码器旋转产生的正交信号脉冲,自动控制CNT自增或自减,从而指示编码器的位置、旋转方向和旋转速度 每个高级定…

四.4 Redis 五大数据类型/结构的详细说明/详细使用( zset 有序集合数据类型详解和使用)

四.4 Redis 五大数据类型/结构的详细说明/详细使用( zset 有序集合数据类型详解和使用) 文章目录 四.4 Redis 五大数据类型/结构的详细说明/详细使用( zset 有序集合数据类型详解和使用)1. 有序集合 Zset(sorted set)2. zset 有序…

Spring AI 在微服务中的应用:支持分布式 AI 推理

1. 引言 在现代企业中,微服务架构 已成为开发复杂系统的主流方式,而 AI 模型推理 也越来越多地被集成到业务流程中。如何在分布式微服务架构下高效地集成 Spring AI,使多个服务可以协同完成 AI 任务,并支持分布式 AI 推理&#x…

使用Ollama和Open WebUI快速玩转大模型:简单快捷的尝试各种llm大模型,比如DeepSeek r1

Ollama本身就是非常优秀的大模型管理和推理组件,再使用Open WebUI更加如虎添翼! Ollama快速使用指南 安装Ollama Windows下安装 下载Windows版Ollama软件:Release v0.5.7 ollama/ollama GitHub 下载ollama-windows-amd64.zip这个文件即可…

EasyExcel写入和读取多个sheet

最近在工作中,作者频频接触到Excel处理,因此也对EasyExcel进行了一定的研究和学习,也曾困扰过如何处理多个sheet,因此此处分享给大家,希望能有所帮助 目录 1.依赖 2. Excel类 3.处理Excel读取和写入多个sheet 4. 执…

《DeepSeek 网页/API 性能异常(DeepSeek Web/API Degraded Performance):网络安全日志》

DeepSeek 网页/API 性能异常(DeepSeek Web/API Degraded Performance)订阅 已识别 - 已识别问题,并且正在实施修复。 1月 29, 2025 - 20:57 CST 更新 - 我们将继续监控任何其他问题。 1月 28, 2025 - 22&am…

安卓(android)饭堂广播【Android移动开发基础案例教程(第2版)黑马程序员】

一、实验目的(如果代码有错漏,可查看源码) 1.熟悉广播机制的实现流程。 2.掌握广播接收者的创建方式。 3.掌握广播的类型以及自定义官博的创建。 二、实验条件 熟悉广播机制、广播接收者的概念、广播接收者的创建方式、自定广播实现方式以及有…

分享|借鉴传统操作系统中分层内存系统的理念(虚拟上下文管理技术)提升LLMs在长上下文中的表现

《MemGPT: Towards LLMs as Operating Systems》 结论: 大语言模型(LLMs)上下文窗口受限问题的背景下, 提出了 MemGPT,通过类操作系统的分层内存系统的虚拟上下文管理技术, 提升 LLMs 在复杂人物&#…

games101-作业3

由于此次试验需要加载模型,涉及到本地环节,如果是windows系统,需要对main函数中的路径稍作改变: 这么写需要: #include "windows.h" 该段代码: #include "windows.h" int main(int ar…

Spring Boot 日志:项目的“行车记录仪”

一、什么是Spring Boot日志 (一)日志引入 在正式介绍日志之前,我们先来看看上篇文章中(Spring Boot 配置文件)中的验证码功能的一个代码片段: 这是一段校验用户输入的验证码是否正确的后端代码&#xff0c…