MATLAB实现单层竞争神经网络数据分类

一.单层竞争神经网络介绍

单层竞争神经网络(Single-Layer Competitive Neural Network)是一种基于竞争学习的神经网络模型,主要用于数据分类和模式识别。其核心思想是通过神经元之间的竞争机制,使得网络能够自动学习输入数据的特征,并将其分类到不同的类别中。

以下是单层竞争神经网络数据分类的详细原理和流程:

1. 网络结构

单层竞争神经网络通常由以下部分组成:

  • 输入层:接收输入数据,每个输入节点对应输入向量的一个特征。
  • 输出层(竞争层):由一组神经元组成,每个神经元代表一个类别或模式。神经元之间通过竞争机制决定哪个神经元被激活。
  • 权重矩阵:连接输入层和输出层的权重矩阵,表示输入特征与输出类别之间的关联强度。

2. 竞争学习原理

竞争学习的核心思想是胜者通吃Winner-Takes-All, WTA)。在每次训练中,只有一个输出神经元会被激活,成为胜者,并更新其权重以更好地匹配输入数据。

2.1 相似性度量

输入向量与每个输出神经元的权重向量之间的相似性通常通过欧氏距离或余弦相似度来衡量。假设输入向量为 x=[x1,x2,…,xn]x=[x1,x2,…,xn],第 jj 个输出神经元的权重向量为 wj=[wj1,wj2,…,wjn]wj=[wj1,wj2,…,wjn],则相似性度量可以表示为:

  • 欧氏距离:dj=∥x−wj∥dj​=∥xwj​∥
  • 余弦相似度:sj=x⋅wj∥x∥∥wj∥sj​=∥x∥∥wj​∥xwj​​

2.2 竞争机制

选择与输入向量最相似的输出神经元作为胜者:

  • 如果使用欧氏距离,选择距离最小的神经元。
  • 如果使用余弦相似度,选择相似度最大的神经元。

胜者神经元的输出为 1,其他神经元的输出为 0

3. 训练流程

单层竞争神经网络的训练过程如下:

3.1 初始化

  • 初始化权重矩阵 W(通常随机初始化)。
  • 设置学习率 η(控制权重更新的步长)。

3.2 输入数据

  • 将输入数据 xx 输入网络。

3.3 计算相似性

  • 对于每个输出神经元 j,计算输入向量 x 与权重向量 wj​ 的相似性(如欧氏距离或余弦相似度)。

3.4 选择胜者

  • 选择与输入向量最相似的神经元作为胜者 j∗j∗。

3.5 更新权重

  • 更新胜者神经元的权重向量:

wj∗(t+1)=wj∗(t)+η⋅(x−wj∗(t))wj(t+1)=wj(t)+η⋅(xwj(t))

其中,tt 表示当前训练步数。

3.6 重复训练

  • 对训练集中的所有样本重复上述步骤,直到权重收敛或达到预定的训练次数。

4. 分类流程

在训练完成后,单层竞争神经网络可以用于数据分类:

  1. 输入待分类的数据 xx
  2. 计算输入向量与每个输出神经元权重向量的相似性。
  3. 选择最相似的神经元作为分类结果。

二. MATLAB代码

完整代码见:https://download.csdn.net/download/corn1949/90337841

三.程序结果

测试数据的分类准确度: 95.00%

>>

 完整代码见:https://download.csdn.net/download/corn1949/90337841

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/965690.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【漫画机器学习】082.岭回归(或脊回归)中的α值(alpha in ridge regression)

岭回归(Ridge Regression)中的 α 值 岭回归(Ridge Regression)是一种 带有 L2​ 正则化 的线性回归方法,用于处理多重共线性(Multicollinearity)问题,提高模型的泛化能力。其中&am…

网络安全 | 零信任架构:重构安全防线的未来趋势

网络安全 | 零信任架构:重构安全防线的未来趋势 一、前言二、零信任架构的核心概念与原理2.1 核心概念2.2 原理 三、零信任架构的关键技术组件3.1 身份管理与认证系统3.2 授权与访问控制系统3.3 网络与安全监测系统3.4 加密与数据保护技术 四、零信任架构与传统安全…

网络爬虫学习:借助DeepSeek完善爬虫软件,增加停止任务功能

一、引言 我从24年11月份开始学习网络爬虫应用开发,经过2个来月的努力,终于完成了开发一款网络爬虫软件的学习目标。这几天对本次学习及应用开发进行一下回顾总结。前面已经发布了两篇日志: 网络爬虫学习:应用selenium从搜*狐搜…

JVM图文入门

往期推荐 【已解决】redisCache注解失效,没写cacheConfig_com.howbuy.cachemanagement.client.redisclient#incr-CSDN博客 【已解决】OSS配置问题_keyuewenhua.oss-cn-beijing.aliyuncs-CSDN博客 【排坑】云服务器docker部署前后端分离项目域名解析OSS-CSDN博客 微服…

VScode如何使用deepseek详细教程

本章教程,主要介绍如何在vscode中,安装使用deepseek教程。deepseek生成式人工智能模型最近可是非常的热门。感兴趣的可以尝试看看吧。 一、注册deepseek账号 注册登录地址:https://platform.deepseek.com/api_keys 注册登录账号之后,创建一个API key ,将这个API key复制下…

大数据相关职位介绍之三(数据挖掘,数据安全 ,数据合规师,首席数据官,数据科学家 )

大数据相关职位介绍之三(数据挖掘,数据安全 ,数据合规师,首席数据官,数据科学家 ) 文章目录 大数据相关职位介绍之三(数据挖掘,数据安全 ,数据合规师,首席数据…

[基础]端口隔离实验

实验教程 隔离类型 双向隔离:统一端口隔离组的接口之间隔离,不同端口隔离组的接口之间不隔离,端口隔离只针对同一设备上的端口隔离组成员,对于不同设备上的接口而言无法实现。单向隔离:实现不同端口隔离组的接口之间的…

vscode 如何通过Continue引入AI 助手deepseek

第一步: 在deepseek 官网上注册账号,得到APIKeys(deepseek官网地址) 创建属于自己的APIKey,然后复制这个key,(注意保存自己的key)! 第二步: 打开vscode,在插件市场安装Continue插件, 点击设置,添加deepseek模型,默认…

FPGA的IP核接口引脚含义-快解

疑问 手册繁琐,怎样快速了解IP核各输入输出接口引脚的含义。 答疑 不慌不慌,手册确实比较详细但繁琐,如何快速知晓该部分信息,涛tao道长给你们说,简单得很,一般新入门的道友有所不知,往往后面…

“AI隐患识别系统,安全多了道“智能护盾”

家人们,在生活和工作里,咱们都知道安全那可是头等大事。不管是走在马路上,还是在工厂车间忙碌,又或是住在高楼大厦里,身边都可能藏着一些安全隐患。以前,发现这些隐患大多靠咱们的眼睛和经验,可…

RocketMQ中的NameServer主要数据结构

1.前言 NameServer是RocketMQ中的一个比较重要的组件,我们这篇博客针对NameSever中包含的组件进行分析,分析一下NameServer中包含的组件以及组件的作用。以前我有一篇博客中rocketMq源码分析之搭建本地环境-CSDN博客,在这篇博客中就简单看了…

8-登录流程

在AppStartInitFinish_CreateLoginUI.初始化后,执行Login界面的初始化 登录面板逻辑:UILoginComponentSystem,针对组件UILoginComponent创建的System 登录面板逻辑:UILoginComponent 逻辑层: LoginHelper中的clientSenderComponent.LoginA…

基于HAI部署DeepSeekR1的招标文书智能辅助生产开发与应用

一、前言 1.1行业背景 在日常商业活动中,招投标流程往往是企业竞标和项目落地的关键一环。其中,招标文书的编写工作对于投标企业极具挑战:既要保证逻辑清晰、条理分明,又必须遵循招标机构的各类格式规范,甚至还有特定…

SQL/Panda映射关系

Pandas教程(非常详细)_pandas 教程-CSDN博客 SQL:使用SELECT col_1, col_2 FROM tab; Pandas:使用df[[col_1, col_2]]。 SQL:使用SELECT * FROM tab WHERE col_1 11 AND col_2 > 5; Pandas:使用df…

Sentinel的安装和做限流的使用

一、安装 Release v1.8.3 alibaba/Sentinel GitHubA powerful flow control component enabling reliability, resilience and monitoring for microservices. (面向云原生微服务的高可用流控防护组件) - Release v1.8.3 alibaba/Sentinelhttps://github.com/alibaba/Senti…

院校联合以项目驱动联合培养医工计算机AI人才路径探析

一、引言 1.1 研究背景与意义 在科技飞速发展的当下,医疗人工智能作为一个极具潜力的新兴领域,正深刻地改变着传统医疗模式。从疾病的早期诊断、个性化治疗方案的制定,到药物研发的加速,人工智能技术的应用极大地提升了医疗服务…

Hot100之矩阵

73矩阵置零 题目 思路解析 收集0位置所在的行和列 然后该行全部初始化为0 该列全部初始化为0 代码 class Solution {public void setZeroes(int[][] matrix) {int m matrix.length;int n matrix[0].length;List<Integer> list1 new ArrayList<>();List<…

w186格障碍诊断系统spring boot设计与实现

&#x1f64a;作者简介&#xff1a;多年一线开发工作经验&#xff0c;原创团队&#xff0c;分享技术代码帮助学生学习&#xff0c;独立完成自己的网站项目。 代码可以查看文章末尾⬇️联系方式获取&#xff0c;记得注明来意哦~&#x1f339;赠送计算机毕业设计600个选题excel文…

ASP.NET Core JWT

目录 Session的缺点 JWT&#xff08;Json Web Token&#xff09; 优点&#xff1a; 登录流程 JWT的基本使用 生成JWT 解码JWT 用JwtSecurityTokenHandler对JWT解码 注意 Session的缺点 对于分布式集群环境&#xff0c;Session数据保存在服务器内存中就不合适了&#…

Axure大屏可视化动态交互设计:解锁数据魅力,引领决策新风尚

可视化组件/模板预览&#xff1a;Axure 一、大屏可视化技术概览 在数据驱动决策的时代&#xff0c;大屏可视化技术凭借直观、动态的展示方式&#xff0c;已成为众多行业提升管理效率和优化决策过程的关键工具。它能够将复杂的数据转化为易于理解的图形和动画&#xff0c;帮助…