人工智能领域单词:英文解释

目录

  • 1、前言
  • 2、单词组1:15个
  • 3、单词组2:15个
  • 4、单词组3:15个
  • 5、单词组4:15个
  • 6、单词组5:15个

1、前言

亲爱的家人们,创作很不容易,若对您有帮助的话,请点赞收藏加关注哦,您的关注是我持续创作的动力,谢谢大家!有问题请私信或联系邮箱:fn_kobe@163.com

2、单词组1:15个

1、人工智能(Artificial Intelligence, AI): a technology that simulates human intelligence, including machine learning, natural language processing, computer vision, and other fields.

2、机器学习 (Machine Learning, ML): a technology that enables computers to learn automatically and gradually improve their performance, including supervised learning, unsupervised learning, and reinforcement learning.

3、深度学习(Deep Learning, DL): a type of machine learning that uses neural networks with multiple layers to learn complex patterns from data.

4、自然语言处理 (Natural Language Processing, NLP): a technology that enables computers to understand and generate human language.

5、计算机视觉 (Computer Vision, CV): a technology that enables computers to interpret and understand visual data from the world.

6、神经网络 (Neural Network, NN): a type of machine learning algorithm that is modeled after the structure and function of the human brain.

7、人类智能 (Human Intelligence, HI): the intellectual capacity and abilities of humans, such as perception, learning, reasoning, and problem-solving.

8、监督学习 (Supervised Learning): a type of machine learning in which the algorithm learns from labeled examples.

9、无监督学习 (Unsupervised Learning): a type of machine learning in which the algorithm learns from unlabeled examples.

10、强化学习 (Reinforcement Learning): a type of machine learning in which the algorithm learns from feedback in the form of rewards or punishments.

11、神经元(Neuron): a fundamental building block of neural networks, which receives inputs and produces outputs based on an activation function.

12、感知器 (Perceptron): a type of neural network that consists of a single layer of neurons and is used for simple classification tasks.

13、卷积神经网络(Convolutional Neural Network, CNN): a type of neural network that is used for image recognition and processing.

14、递归神经网络 (Recurrent Neural Network, RNN): a type of neural network that is used for sequence processing and prediction.

15、遗传算法(Genetic Algorithm, GA): a method of optimization inspired by the process of natural selection, which uses principles of mutation, crossover, and selection to evolve solutions to a problem.

3、单词组2:15个

16、自动编码器 (Autoencoder, AE): a type of neural network that is used for unsupervised learning by training the network to reconstruct its input.

17、强人工智能 (Strong Artificial Intelligence): an hypothetical form of AI that would have general intelligence similar to that of a human being.

18、弱人工智能 (Weak Artificial Intelligence): a form of AI that is designed to perform specific tasks, such as speech recognition or image classification, but does not have general intelligence.

19、数据挖掘 (Data Mining): the process of analyzing large datasets to discover patterns and insights.

20、数据预处理 (Data Preprocessing): the process of cleaning, transforming, and preparing data for analysis and machine learning.

21、特征工程 (Feature Engineering): the process of selecting and extracting relevant features from raw data to improve the performance of machine learning algorithms.

22、机器视觉 (Machine Vision): a subset of computer vision that focuses on visual perception by machines, such as object detection and recognition.

23、自动化 (Automation): the use of technology and machines to perform tasks that were previously done by humans.

24、增强现实 (Augmented Reality, AR): a technology that overlays digital information onto the real world, typically through a mobile device or smart glasses.

25、虚拟现实 (Virtual Reality, VR): a technology that creates a simulated environment that can be experienced through a VR headset or other device.

26、语音识别 (Speech Recognition): a technology that enables computers to understand and transcribe human speech.

27、机器翻译 (Machine Translation): a technology that enables computers to translate text from one language to another.

28、强化学习 (Reinforcement Learning): a type of machine learning in which the algorithm learns from feedback in the form of rewards or punishments.

29、深度强化学习 (Deep Reinforcement Learning): a type of reinforcement learning that uses deep neural networks to learn complex policies and decision-making strategies.

30、知识图谱 (Knowledge Graph): a knowledge base that stores structured information about entities, relationships, and attributes in a graph database.
语言模型 (Language Model): a type of model that is used to predict the probability of a sequence of words in a language, typically used in natural language processing (NLP).

4、单词组3:15个

31、语言模型 (Language Model): a type of model that is used to predict the probability of a sequence of words in a language, typically used in natural language processing (NLP).

32、文本分类 (Text Classification): a type of NLP task that involves categorizing text into one or more predefined categories, such as spam detection or sentiment analysis.

33、图像分类 (Image Classification): a type of computer vision task that involves assigning a label or category to an image, such as identifying objects or scenes.

34、目标检测 (Object Detection): a type of computer vision task that involves identifying and localizing objects within an image or video.

35、图像分割 (Image Segmentation): a type of computer vision task that involves partitioning an image into multiple segments or regions based on their visual properties.

36、生成对抗网络 (Generative Adversarial Networks, GANs): a type of neural network architecture that consists of two networks (a generator and a discriminator) that compete with each other to generate realistic synthetic data.

37、受限玻尔兹曼机 (Restricted Boltzmann Machine, RBM): a type of neural network that is used for unsupervised learning, typically used for feature learning and data compression.

38、线性回归 (Linear Regression): a type of supervised learning algorithm that is used to model the relationship between a dependent variable and one or more independent variables.

39、逻辑回归 (Logistic Regression): a type of supervised learning algorithm that is used for binary classification problems, where the output is a probability of belonging to one of two classes.

40、支持向量机 (Support Vector Machine, SVM): a type of supervised learning algorithm that is used for classification and regression analysis, typically used for binary classification problems and data with clear margins between classes.

41、决策树 (Decision Tree): a type of supervised learning algorithm that is used for classification and regression analysis, where the model creates a tree-like structure to represent decisions and their possible consequences.

42、随机森林 (Random Forest): a type of ensemble learning method that uses multiple decision trees to improve the accuracy and robustness of the model.

43、梯度下降 (Gradient Descent): an optimization algorithm that is used to minimize the error or loss function in a model by iteratively adjusting the parameters in the direction of steepest descent.

44、反向传播 (Backpropagation): a common method used to train neural networks by propagating the error or loss back through the network and adjusting the weights based on the calculated gradients.

45、批量归一化 (Batch Normalization): a technique used in deep learning to normalize the inputs to a layer to improve the stability and speed of the training process.

5、单词组4:15个

46、卷积神经网络 (Convolutional Neural Network, CNN): a type of neural network architecture that is typically used for image and video processing, where the model uses convolutional layers to extract features from the input data.

47、循环神经网络 (Recurrent Neural Network, RNN): a type of neural network architecture that is used for sequential data processing, such as natural language processing or time series analysis, where the model uses recurrent connections to process the input data over time.

48、强化学习 (Reinforcement Learning): a type of machine learning that involves an agent learning to make decisions in an environment by receiving feedback in the form of rewards or punishments.

49、迁移学习 (Transfer Learning): a machine learning technique that involves transferring knowledge or information from one model or domain to another, typically used to improve the performance of a model with limited data.

50、多任务学习 (Multi-Task Learning): a machine learning technique that involves training a model to perform multiple tasks simultaneously, typically used to improve the generalization and efficiency of the model.

51、自编码器 (Autoencoder): a type of neural network that is used for unsupervised learning, where the model is trained to reconstruct the input data by learning a compressed representation of the data.

52、奇异值分解 (Singular Value Decomposition, SVD): a matrix factorization technique used to reduce the dimensionality of data, commonly used in recommender systems.

53、深度信念网络 (Deep Belief Network, DBN): a type of neural network architecture that is used for unsupervised learning, where the model is trained to learn a hierarchy of representations of the input data.

54、支持向量机 (Support Vector Machine, SVM): a type of supervised learning algorithm used for classification and regression analysis, where the model finds the optimal hyperplane that separates the data into different classes.

55、朴素贝叶斯 (Naive Bayes): a type of probabilistic algorithm used for classification, where the model makes predictions by calculating the probability of each class given the input data.

56、集成学习 (Ensemble Learning): a machine learning technique that involves combining multiple models to improve the performance and stability of the model.

57、神经样条回归 (Neural spline regression): a type of regression algorithm that uses neural networks to model the relationship between variables.

58、非负矩阵分解 (Non-negative Matrix Factorization, NMF): a matrix factorization technique used for feature extraction and dimensionality reduction, where the model learns non-negative weights that represent the features of the input data.

59、分层聚类 (Hierarchical Clustering): a type of unsupervised learning algorithm used for clustering analysis, where the model creates a hierarchy of clusters based on the similarity of the data.

60、数据清洗 (Data Cleaning): the process of detecting and correcting or removing errors, inconsistencies, and inaccuracies in data to improve the quality and reliability of the data.

6、单词组5:15个

61、数据预处理 (Data Preprocessing): the process of preparing data for analysis, including cleaning, transforming, and organizing data to make it suitable for machine learning algorithms.

62、数据增强 (Data Augmentation): a technique used in machine learning to increase the amount of training data by generating new data from the existing data, for example, by rotating, flipping, or cropping images.

63、数据采集 (Data Collection): the process of collecting data from various sources, including web scraping, surveys, sensors, and other data sources.

64、数据挖掘 (Data Mining): the process of analyzing large datasets to discover patterns, relationships, and insights that can be used for decision-making.

65、强化学习 (Reinforcement Learning): a type of machine learning that involves training an agent to interact with an environment by learning from feedback in the form of rewards or punishments.

66、迁移学习 (Transfer Learning): a machine learning technique that involves leveraging knowledge from one task to improve performance on another related task.

67、相似度度量 (Similarity Metrics): mathematical methods used to quantify the similarity or distance between two objects or datasets, commonly used in clustering and classification analysis.

68、网格搜索 (Grid Search): a technique used to optimize the hyperparameters of a machine learning model by exhaustively searching through a predefined grid of hyperparameters.

69、模型评估 (Model Evaluation): the process of assessing the performance of a machine learning model, commonly done using metrics such as accuracy, precision, recall, and F1 score.

70、神经机器翻译 (Neural Machine Translation, NMT): a type of machine translation system that uses neural networks to translate text from one language to another.

71、看门狗定时器 (Watchdog Timer): a system mechanism that is used to detect and recover from system failures, commonly used in embedded systems and critical applications.

72、自然语言处理 (Natural Language Processing, NLP): a subfield of artificial intelligence that focuses on the interaction between computers and humans using natural language, including tasks such as text classification, sentiment analysis, and language translation.

73、深度强化学习 (Deep Reinforcement Learning): a subfield of machine learning that combines deep learning with reinforcement learning to train agents to make decisions based on high-dimensional input data.

74、数据可视化 (Data Visualization): the process of displaying data in a graphical or pictorial format to enable easier understanding and analysis of the data.

75、数据科学 (Data Science): an interdisciplinary field that involves the extraction, analysis, and interpretation of large and complex datasets using statistical, mathematical, and machine learning techniques.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/955473.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

企业级NoSQL数据库Redis

1.浏览器缓存过期机制 1.1 最后修改时间 last-modified 浏览器缓存机制是优化网页加载速度和减少服务器负载的重要手段。以下是关于浏览器缓存过期机制、Last-Modified 和 ETag 的详细讲解: 一、Last-Modified 头部 定义:Last-Modified 表示服务器上资源的最后修改时间。 作…

FPGA车牌识别

基于FPGA的车牌识别主要包含以下几个步骤:图像采集、颜色空间转换、边缘检测、形态学处理(腐蚀和膨胀)、特征值提取、模板匹配、结果显示。先用matlab对原理进行仿真,后用vivado和modelsim进行设计和仿真。 一、1.图像采集采用ov…

客户案例:致远OA与携程商旅集成方案

一、前言 本项目原型客户公司创建于1992年,主要生产并销售包括糖果系列、巧克力系列、烘焙系列、卤制品系列4大类,200多款产品。公司具有行业领先的生产能力,拥有各类生产线100条,年产能超过10万吨。同时,经过30年的发展,公司积累了完善的销售网络,核心经销商已经超过1200个,超…

怎么修复损坏的U盘?而且不用格式化的方式!

当你插入U盘时,若电脑弹出“需要格式化才能使用”提示,且无法打开或读取其中的数据,说明U盘极有可能已经损坏。除此之外,若电脑在连接U盘后显示以下信息,也可能意味着U盘出现问题,需要修复损坏的U盘&#x…

贪心算法(题1)区间选点

输出 2 #include <iostream> #include<algorithm>using namespace std;const int N 100010 ;int n; struct Range {int l,r;bool operator <(const Range &W)const{return r<W.r;} }range[N];int main() {scanf("%d",&n);for(int i0;i&l…

2.使用Spring BootSpring AI快速构建AI应用程序

Spring AI 是基于 Spring Boot3.x 框架构建&#xff0c;Spring Boot官方提供了非常便捷的工具Spring Initializr帮助开发者快速的搭建Spring Boot应用程序,IDEA也集成了此工具。本文使用的开发工具IDEASpring Boot 3.4Spring AI 1.0.0-SNAPSHOTMaven。 1.创建Spring Boot项目 …

【Linux】Socket编程-TCP构建自己的C++服务器

&#x1f308; 个人主页&#xff1a;Zfox_ &#x1f525; 系列专栏&#xff1a;Linux 目录 一&#xff1a;&#x1f525; Socket 编程 TCP &#x1f98b; TCP socket API 详解&#x1f98b; 多线程远程命令执行&#x1f98b; 网络版计算器&#xff08;应用层自定义协议与序列化…

森林网络部署,工业4G路由器实现林区组网远程监控

在广袤无垠的林区&#xff0c;每一片树叶的摇曳、每一丝空气的流动&#xff0c;都关乎着生态的平衡与安宁。林区监控正以强大的力量&#xff0c;为这片绿色家园筑起一道坚固的防线。 工业 4G 路由器作为林区监控组网的守护者&#xff0c;凭借着卓越的通讯性能&#xff0c;突破…

数据库管理-第284期 奇怪的sys.user$授权(20250116)

数据库管理284期 20245-01-16 数据库管理-第284期 奇怪的sys.user$授权&#xff08;20250116&#xff09;1 问题2 CDB与PDB3 跨实例3.1 通过scanip访问数据库3.2 通过节点1的VIP访问数据库3.3 通过节点3的VIP访问数据库3.4 在节点3赋权后测试3.5 小结 总结 数据库管理-第284期 …

vue2配置跨域后请求的是本机

这个我来说明一下&#xff0c;因为我们公司的后端设置解决了跨域问题&#xff0c;所以我有很久没有看相关的内容了&#xff0c;然后昨天请求了需要跨域的接口&#xff0c;请求半天一直不对&#xff0c;浏览器显示的是本机地址&#xff0c;我以为是自己配置错了&#xff0c;后面…

从玩具到工业控制--51单片机的跨界传奇【3】

在科技的浩瀚宇宙中&#xff0c;51 单片机就像一颗独特的星辰&#xff0c;散发着神秘而迷人的光芒。对于无数电子爱好者而言&#xff0c;点亮 51 单片机上的第一颗 LED 灯&#xff0c;不仅仅是一次简单的操作&#xff0c;更像是开启了一扇通往新世界的大门。这小小的 LED 灯&am…

Java技术栈 —— 如何把项目部署到公网?

如何把项目部署到公网&#xff1f; 一、准备工作1.1 获得一台云服务器1.2 安装SSH客户端 二、云服务器部署2.1 配置云服务器2.2 使用nginx部署1个或多个前端项目 三、访问测试四、访问控制 平常大部分人都是本地写写项目&#xff0c;然后通过localhost的方式去访问&#xff0c;…

春秋杯-WEB

SSTI 可以看到主页那里有个登录测试之后为ssti {{4*4}} fenjing梭哈即可得到payload {{((g.pop.__globals__.__builtins__.__import__(os)).popen(cat flag)).read()}}file_copy 看到题目名字为file_copy&#xff0c; 当输入路径时会返回目标文件的大小&#xff0c; 通…

基于微信小程序教学辅助系统设计与实现(LW+源码+讲解)

专注于大学生项目实战开发,讲解,毕业答疑辅导&#xff0c;欢迎高校老师/同行前辈交流合作✌。 技术范围&#xff1a;SpringBoot、Vue、SSM、HLMT、小程序、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容&#xff1a;…

项目开发实践——基于SpringBoot+Vue3实现的在线考试系统(六)

文章目录 一、考试管理模块实现1、添加考试功能实现1.1 页面设计1.2 前端功能实现1.3 后端功能实现1.4 效果展示2、考试管理功能实现2.1 页面设计2.2 前端功能实现2.3 后端功能实现2.3.1 后端查询接口实现2.3.2 后端编辑接口实现2.3.3 后端删除接口实现2.4 效果展示二、代码下载…

计算机网络 (43)万维网WWW

前言 万维网&#xff08;World Wide Web&#xff0c;WWW&#xff09;是Internet上集文本、声音、动画、视频等多种媒体信息于一身的信息服务系统。 一、基本概念与组成 定义&#xff1a;万维网是一个分布式、联机式的信息存储空间&#xff0c;通过超文本链接的方式将分散的信息…

如何学习数学 | 数学家如何思考

学习数学的关键在哪里&#xff1f; 原创 遇见数学 不少人面对数学都会觉得高深莫测&#xff0c;甚至非常枯燥乏味。 只有当你真正走入它的世界&#xff0c;才会发现里面蕴含着无尽的智慧和美感。要想推开这座数学的大门&#xff0c;需要的不仅仅是背公式&#xff0c;或者做一…

【Python通过UDP协议传输视频数据】(界面识别)

提示&#xff1a;界面识别项目 前言 随着网络通信技术的发展&#xff0c;视频数据的实时传输在各种场景中得到了广泛应用。UDP&#xff08;User Datagram Protocol&#xff09;作为一种无连接的协议&#xff0c;凭借其低延迟、高效率的特性&#xff0c;在实时性要求较高的视频…

ZNS SSD垃圾回收优化方案解读-2

四、Brick-ZNS 关键设计机制解析 Brick-ZNS 作为一种创新的 ZNS SSD 设计&#xff0c;聚焦于解决传统 ZNS SSDs 在垃圾回收&#xff08;GC&#xff09;过程中的数据迁移低效问题&#xff0c;其核心特色为存储内数据迁移与地址重映射功能。在应用场景中&#xff0c;针对如 Rock…

当PHP遇上区块链:一场奇妙的技术之旅

PHP 与区块链的邂逅 在技术的广袤宇宙中&#xff0c;区块链技术如同一颗耀眼的新星&#xff0c;以其去中心化、不可篡改、透明等特性&#xff0c;掀起了一场席卷全球的变革浪潮。众多开发者怀揣着对新技术的热忱与探索精神&#xff0c;纷纷投身于区块链开发的领域&#xff0c;试…