⚙️ 如何调整重试策略以适应不同的业务需求?

调整 Kafka 生产者和消费者的重试策略以适应不同的业务需求,需要根据业务的特性和容错要求来进行细致的配置。以下是一些关键的调整策略:

  1. 业务重要性

    • 对于关键业务消息,可以增加重试次数,并设置较长的重试间隔,以减少消息丢失的风险。
    • 对于非关键业务消息,可以减少重试次数或不进行重试,以避免不必要的资源消耗。
  2. 消息幂等性

    • 如果业务逻辑是幂等的,即多次处理相同消息不会导致业务状态不一致,可以增加重试次数。
    • 如果业务逻辑不是幂等的,需要谨慎设置重试策略,或者实现去重逻辑。
  3. 消息时效性

    • 对于时效性要求高的消息,可以减少重试间隔,以便快速尝试重新发送。
    • 对于时效性要求不高的消息,可以增加重试间隔,减少对 Kafka 集群的压力。
  4. 系统容量和负载

    • 根据 Kafka 集群和下游系统的容量和负载情况调整重试策略,避免因重试导致的额外负载影响系统稳定性。
  5. 错误类型

    • 对于临时性错误(如网络问题),可以设置较高的重试次数和较短的重试间隔。
    • 对于永久性错误(如消息格式错误),应减少重试次数,避免无意义的重试。
  6. 死信队列(DLQ)

    • 对于重试次数用尽后仍然发送失败的消息,可以配置死信队列进行存储,以便后续分析和处理。
  7. 监控和告警

    • 实施实时监控,对重试次数、失败率等关键指标进行监控,并设置告警阈值。
  8. 业务流程控制

    • 在业务流程中实现重试逻辑,例如在业务层捕获异常并根据业务规则进行重试。
  9. 自定义重试策略

    • 实现自定义的重试策略,例如指数退避策略,以适应特定的业务场景。
  10. 事务性消息

    • 如果业务要求消息发送的原子性,可以启用事务性消息发送,确保消息要么全部发送成功,要么全部不发送。
  11. 资源限制

    • 考虑到生产者和消费者的资源限制,如内存和网络带宽,合理设置重试策略,避免资源耗尽。
  12. 反馈机制

    • 建立反馈机制,根据业务运行情况和系统性能反馈调整重试策略。

通过综合考虑上述因素,可以为不同的业务需求定制合适的重试策略,以确保 Kafka 消息系统的高效性和可靠性。

在这里插入图片描述

以下是一些代码案例,展示了如何根据不同的业务需求调整 Kafka 生产者和消费者的重试策略

在这里插入图片描述

Kafka 生产者重试策略案例

import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.serialization.StringSerializer;

import java.util.Properties;

public class CustomRetryProducerDemo {
    public static void main(String[] args) {
        // 配置生产者属性
        Properties props = new Properties();
        props.put("bootstrap.servers", "4.5.8.4:9092");
        props.put("key.serializer", StringSerializer.class.getName());
        props.put("value.serializer", StringSerializer.class.getName());
        props.put("retries", 5); // 设置重试次数
        props.put("retry.backoff.ms", 1000); // 设置重试间隔为1秒
        props.put("buffer.memory", 33554432); // 设置缓冲区大小
        props.put("batch.size", 16384); // 设置批次大小
        props.put("linger.ms", 10); // 设置等待时间为10毫秒
        props.put("max.in.flight.requests.per.connection", 1); // 设置最大在途请求数

        // 创建生产者实例
        Producer<String, String> producer = new KafkaProducer<>(props);

        // 发送消息
        for (int i = 0; i < 100; i++) {
            String key = "key-" + i;
            String value = "value-" + i;
            ProducerRecord<String, String> record = new ProducerRecord<>("test-topic", key, value);
            producer.send(record, (metadata, exception) -> {
                if (exception != null) {
                    // 处理消息发送失败的情况
                    System.err.println("发送消息失败:" + exception.getMessage());
                } else {
                    // 处理消息发送成功的情况
                    System.out.println("消息发送成功,偏移量:" + metadata.offset());
                }
            });
        }

        // 关闭生产者
        producer.close();
    }
}

Kafka 消费者重试策略案例

import org.apache.kafka.clients.consumer.Consumer;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.serialization.StringDeserializer;

import java.time.Duration;
import java.util.Collections;
import java.util.Properties;

public class CustomRetryConsumerDemo {
    public static void main(String[] args) {
        // 配置消费者属性
        Properties props = new Properties();
        props.put("bootstrap.servers", "4.5.8.4:9092");
        props.put("group.id", "test-group");
        props.put("enable.auto.commit", "true");
        props.put("auto.commit.interval.ms", "1000");
        props.put("key.deserializer", StringDeserializer.class.getName());
        props.put("value.deserializer", StringDeserializer.class.getName());
        props.put("max.poll.records", 500); // 设置每次拉取的最大记录数
        props.put("fetch.min.bytes", 1024); // 设置最小获取1KB的数据
        props.put("fetch.max.wait.ms", 500); // 设置最大等待500ms

        // 创建消费者实例
        Consumer<String, String> consumer = new KafkaConsumer<>(props);

        // 订阅主题
        consumer.subscribe(Collections.singletonList("test-topic"));

        // 消费消息
        while (true) {
            ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(100));
            for (ConsumerRecord<String, String> record : records) {
                try {
                    // 处理消息
                    System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value());
                    // 假设处理消息可能会失败
                    if (record.value().contains("error")) {
                        throw new RuntimeException("模拟处理消息失败");
                    }
                } catch (Exception e) {
                    // 处理消息失败,记录日志或重试
                    System.err.println("处理消息失败:" + e.getMessage());
                    // 可以在这里实现重试逻辑,例如将消息发送到死信队列
                }
            }
            // 批量提交偏移量
            consumer.commitSync();
        }
    }
}

死信队列(DLQ)案例

import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.serialization.StringSerializer;

import java.util.Properties;

public class DLQProducerDemo {
    public static void main(String[] args) {
        // 配置生产者属性
        Properties props = new Properties();
        props.put("bootstrap.servers", "4.5.8.4:9092");
        props.put("key.serializer", StringSerializer.class.getName());
        props.put("value.serializer", StringSerializer.class.getName());
        props.put("retries", 5); // 设置重试次数
        props.put("retry.backoff.ms", 1000); // 设置重试间隔为1秒

        // 创建生产者实例
        Producer<String, String> producer = new KafkaProducer<>(props);

        // 发送消息
        for (int i = 0; i < 100; i++) {
            String key = "key-" + i;
            String value = "value-" + i;
            ProducerRecord<String, String> record = new ProducerRecord<>("test-topic", key, value);
            producer.send(record, (metadata, exception) -> {
                if (exception != null) {
                    // 处理消息发送失败的情况
                    System.err.println("发送消息失败:" + exception.getMessage());
                    // 将失败的消息发送到死信队列
                    ProducerRecord<String, String> dlqRecord = new ProducerRecord<>("test-topic-DLQ", key, exception.getMessage());
                    producer.send(dlqRecord);
                } else {
                    // 处理消息发送成功的情况
                    System.out.println("消息发送成功,偏移量:" + metadata.offset());
                }
            });
        }

        // 关闭生产者
        producer.close();
    }
}

这些代码案例展示了如何根据不同的业务需求调整 Kafka
生产者和消费者的重试策略,包括设置重试次数、重试间隔、处理消息发送失败的情况以及实现死信队列(DLQ)。希望这些示例能帮助您更好地理解和应用
Kafka 的重试机制。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/915114.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

总结拓展十五:特殊采购业务——寄售采购

1、寄售采购的定义 寄售采购是指供应商提供物料&#xff0c;并将它们存储在你处&#xff0c;在贵公司将这些物料从寄售库存提取&#xff08;转自有&#xff09;之前&#xff0c;该供应商一直是这些物料法律上的所有者。只有当这些物料被贵司转自有领用后&#xff0c;供应商才会…

RK3568平台开发系列讲解(GPIO篇)GPIO的sysfs调试手段

🚀返回专栏总目录 文章目录 一、内核配置二、GPIO sysfs节点介绍三、命令行控制GPIO3.1、sd导出GPIO3.2、设置GPIO方向3.3、GPIO输入电平读取3.4、GPIO输出电平设置四、Linux 应用控制GPIO4.1、控制输出4.2、输入检测4.3、使用 GPIO 中断沉淀、分享、成长,让自己和他人都能有…

【算法】——二分查找合集

阿华代码&#xff0c;不是逆风&#xff0c;就是我疯 你们的点赞收藏是我前进最大的动力&#xff01;&#xff01; 希望本文内容能够帮助到你&#xff01;&#xff01; 目录 零&#xff1a;二分查找工具 1&#xff1a;最基础模版 2&#xff1a;mid落点问题 一&#xff1a;最…

JAVA学习日记(十五) 数据结构

一、数据结构概述 数据结构是计算机底层存储、组织数据的方式。 数据结构是指数据相互之间以什么方式排列在一起的。 数据结构是为了更加方便的管理和使用数据&#xff0c;需要结合具体的业务场景来进行选择。 二、常见的数据结构 &#xff08;一&#xff09;栈 特点&…

Windows快速部署并使用GitHub上Swift项目

1.科学上网 2.找到项目&#xff0c;release部分&#xff0c;下载最新版的ZIP文件&#xff0c;并且打开&#xff0c;解压。 3.打开cmd&#xff0c;使用你做项目用的虚拟环境&#xff0c;安装必须安装的包文件 pip install ms-swift[llm] -U 类似这样子唰唰唰一堆安装好之后&am…

C++ | Leetcode C++题解之第552题学生出勤记录II

题目&#xff1a; 题解&#xff1a; class Solution { public:static constexpr int MOD 1000000007;vector<vector<long>> pow(vector<vector<long>> mat, int n) {vector<vector<long>> ret {{1, 0, 0, 0, 0, 0}};while (n > 0) {…

【精读】Kinodynamic Trajectory Optimization and Control for Car-Like Robots

原来阅读这个板块是我用来写小说灵感和摘抄笔记的&#xff0c;但是CSDN总说我重复率太高&#xff0c;mad以后改用来精读论文了 每天都在写不同的文章&#xff01;为什么&#xff1f;主要还是自我的研究进度跟不上课题组的进度 先给自己点根蜡烛11.15就开组会了我还没读完 ho…

学Linux的第八天

目录 管理进程 概念 程序、进程、线程 进程分类 查看进程 ps命令 unix 风格 bsd风格 GNU风格 top命令 格式 统计信息区 进程信息区&#xff1a;显示了每个进程的运行状态 kill命令 作用 格式 管理进程 概念 程序、进程、线程 程序&#xff1a; 二进制文件&…

uniCloud云对象调用第三方接口,根据IP获取用户归属地的免费API接口,亲测可用

需求 在2022年5月初&#xff0c;网络上各大平台上&#xff0c;都开始展示用户IP属地&#xff0c;在某音、某手等小视频平台以及各主流网站应用中&#xff0c;都展示IP归属地&#xff0c;如下图所示&#xff1a; 解决办法 收费文档的肯定有很多&#xff0c;基本你百度搜“归…

Leetcode - 143双周赛

目录 一&#xff0c;3345. 最小可整除数位乘积 I 二&#xff0c;3346. 执行操作后元素的最高频率 I 1.差分数组 2.同向三指针 滑动窗口 三&#xff0c; 3348. 最小可整除数位乘积 II 一&#xff0c;3345. 最小可整除数位乘积 I 本题直接暴力枚举&#xff0c;题目求 >n…

VS2022项目配置笔记

文章目录 $(ProjectDir&#xff09;与 $(SolutionDir) 宏附加包含目录VC目录和C/C的区别 $(ProjectDir&#xff09;与 $(SolutionDir) 宏 假设有一个解决方案 MySolution&#xff0c;其中包含两个项目 ProjectA 和 ProjectB&#xff0c;目录结构如下&#xff1a; C:\Projects\…

ReactPress:深入解析技术方案设计与源码

ReactPress Github项目地址&#xff1a;https://github.com/fecommunity/reactpress 欢迎提出宝贵的建议&#xff0c;欢迎一起共建&#xff0c;感谢Star。 ReactPress是一个基于React框架开发的开源发布平台&#xff0c;它不仅仅是一个简单的博客系统&#xff0c;更是一个功能全…

[编译报错]ImportError: No module named _sqlite3解决办法

1. 问题描述&#xff1a; 在使用python进行代码编译时&#xff0c;提示下面报错&#xff1a; "/home/bspuser/BaseTools/Source/Python/Workspace/WorkspaceDatabase.py", line 18, in <module>import sqlite3File "/usr/local/lib/python2.7/sqlite3/_…

信号量和线程池

1.信号量 POSIX信号量&#xff0c;用与同步操作&#xff0c;达到无冲突的访问共享资源目的&#xff0c;POSIX信号量可以用于线程间同步 初始化信号量 #include <semaphore.h> int sem_init(sem_t *sem, int pshared, unsigned int value); sem&#xff1a;指向sem_t类…

泷羽sec学习打卡-Linux基础2

声明 学习视频来自B站UP主 泷羽sec,如涉及侵权马上删除文章 笔记的只是方便各位师傅学习知识,以下网站只涉及学习内容,其他的都与本人无关,切莫逾越法律红线,否则后果自负 关于Linux的那些事儿-Base2 一、Linux-Base2linux有哪些目录呢&#xff1f;不同目录下有哪些具体的文件呢…

【Android、IOS、Flutter、鸿蒙、ReactNative 】约束布局

Android XML 约束布局 参考 TextView居中 TextView 垂直居中并且靠右 TextView 宽高设置百分比 宽和高的比例 app:layout_constraintDimensionRatio"h,2:1" 表示子视图的宽高比为2:1&#xff0c;其中 h表示保持宽度不变&#xff0c;高度自动调整。 最大宽度 设…

使用HTML、CSS和JavaScript创建动态圣诞树

✅作者简介&#xff1a;2022年博客新星 第八。热爱国学的Java后端开发者&#xff0c;修心和技术同步精进。 &#x1f34e;个人主页&#xff1a;Java Fans的博客 &#x1f34a;个人信条&#xff1a;不迁怒&#xff0c;不贰过。小知识&#xff0c;大智慧。 ✨特色专栏&#xff1a…

golang分布式缓存项目 Day1 LRU 缓存淘汰策略

注&#xff1a;该项目原作者&#xff1a;https://geektutu.com/post/geecache-day1.html。本文旨在记录本人做该项目时的一些疑惑解答以及部分的测试样例以便于本人复习。 LRU缓存淘汰策略 三种缓存淘汰策略 FIFO&#xff08;First In, First Out&#xff09;先进先出 原理&…

面向对象的需求分析和设计(一)

[toc] 1. 引言 前一篇文章《我对需求分析的理解》提到了面向对象分析和设计&#xff0c;正好最近又重新有重点的读了谭云杰著的《Think in UML》&#xff0c;感觉有必要写把书中一些核心内容观点以及自己的想法整理出来&#xff0c;一是方便自己日后的复习&#xff0c;另外也…

php中ajax怎么使用【小白专用24.11.12】

在PHP中&#xff0c;使用Ajax可以实现页面异步加载和动态数据交互。下面是使用Ajax的基本方法&#xff1a; <?php // ajax_endpoint.php// 处理请求&#xff0c;并返回JSON格式的响应 $responseData array(message > Hello from PHP!); header(Content-Type: applicati…