从玩具到工业控制--51单片机的跨界传奇【3】

在科技的浩瀚宇宙中,51 单片机就像一颗独特的星辰,散发着神秘而迷人的光芒。对于无数电子爱好者而言,点亮 51 单片机上的第一颗 LED 灯,不仅仅是一次简单的操作,更像是开启了一扇通往新世界的大门。这小小的 LED 灯,宛如黑暗中的启明星,承载着我们对电子技术的好奇与憧憬,照亮了我们探索科技未知领域的道路 。在接下来的篇章里,让我们一同回溯这段充满挑战与惊喜的旅程,看看这颗 LED 灯如何点燃了我们心中对技术追求的熊熊烈火。

一,单片机的内部结构和工作原理

在单片机入门阶段,我们只需要对其结构有个大概的了解就足够了,等后期随着单片机的深入学习,我们再回头来对其结构进行深入的了解。我在这里也是给大家进行简单的讲解,不会太过深入,防止大家失去学习的信心。如图所示:

FLASH就相当于硬盘SRAM就相当于内存。对于硬盘和内存的概念我就默认大家熟知了,不懂的朋友们可以自行搜索一下这个视频 <内存和硬盘的区别>进行了解。前面,咱们讲过单片机就是一种集成电路,其实在单片机的内部就是如上图所示的结构。单片机内核就是CPU处理器我们写的程序最终被存放在FLASH程序存储器里面我们创建的变量被存储在SRAM数据存储器里面。当单片机开始运行的时候,单片机就会从FLASH程序存储器里面调取运行指令,这里告诉大家:FLASH程序存储器是只读存储器,在单片机运行的过程中,产生的一切数据不会再放入FLASH里面,而是存放在数据存储器里面,就是为了防止程序发生错误,引起单片机的工作异常CPU会根据指令进行运算,会从数据存储器里面调用数据。数据存储器就是CPU用来调取和存放数据,存放中间计算结果的地方SRAM掉电就会丢失数据,所以为了防止这种情况的发生,一般都会配有看门狗来进行监管,当看门狗检测到电压低于某一个范围时,就会立马读取SRAM里面的数据进行存储。然后,CPU把计算的数据再发送给寄存器(GPIO外设),寄存器根据数据再输出1或0,各个引脚再根据1或0输出对应的高低电平,来控制外围设备,读取外部数据也是如此,通过引脚的高低电平变化,寄存器来进行的1或0的数据存储,再发给CPU根据指令进行处理我们操作单片机,其实本质上就是操作各个引脚对应的寄存器。大家进行简单的了解即可。

二,单片机的引脚介绍

我们就以我们要讲解的DIP封装的51单片机来展示其它封装的单片机会多出来4个引脚,多出来的引脚时P4口引脚,这不影响我们的单片机的讲解。如图所示:

 我们从外观上可以看到上面,有个半圆的缺口。在所以的单片机里面,半圆缺口左边对应单片机的第一号引脚,逆时针依次排号。

20号引脚和40号引脚分别为单片机的GND和VCC

51单片机有4组I/O,分别为P0,P1,P2和P3,每组对用8个引脚,也就是说,我们控制这32个引脚来进行外围设备的控制。大家可以看到有些引脚会有个表示,比如T2/P1.0,带有‘ / ’表示这个引脚的功能是可以复用的,也就是说这个引脚有两个功能。没标识的引脚就是普通的I/O口。

T2,T0,T1这些为定时器或计数器引脚(后面会讲解的)。

RXD和TXD为单片机的串口通信引脚,也是我们的程序下载引脚。

INT0和INT1为外部中断引脚。

XTAL1和XTAL2为单片机的外部晶振引脚。

WR(写信号)和 RD(读信号)引脚主要用于外部数据存储器(如 RAM)和 I/O 接口芯片的读写控制。它们是实现单片机与外部设备之间数据传输的关键信号引脚。

EA 引脚用于控制单片机是访问内部程序存储器还是外部程序存储器。这是 51 单片机程序存储选择的关键引脚,当 EA 引脚接高电平时,单片机先从内部程序存储器读取程序指令。如果程序计数器(PC)的值超过了内部程序存储器的容量范围(对于 8051 单片机,内部程序存储器一般为 4KB),那么它会自动转向外部程序存储器读取剩余的程序指令。当 EA 引脚接低电平时,单片机忽略内部程序存储器,直接从外部程序存储器读取所有的程序指令。这种方式适用于程序代码量较大,需要外部扩展大容量程序存储器(如 EPROM、Flash 等)的情况。由于现在我们的单片机都有内部的ROM所以我们不需要读取外部ROM,所以我们直接接高电平就OK了。

ALE 引脚主要用于在访问外部存储器时,锁存低 8 位地址信号。在 51 单片机访问外部存储器(包括数据存储器和程序存储器)的过程中,地址总线是分时复用的,它既用于传输地址信息又用于传输数据信息。当单片机访问外部存储器时,P0 口会先输出低 8 位地址信息,此时 ALE 引脚会输出一个正脉冲。这个正脉冲可以被外部的地址锁存器(如 74LS373)用来锁存 P0 口输出的低 8 位地址,使得地址信息在数据传输阶段能够保持稳定。现在,单片机内部都自带丰富的RAM,不再需要扩展RAM,所以这个引脚用处不大。

PSEN 引脚是程序存储器读选通信号,用于控制对外部程序存储器的读取操作。它是单片机从外部程序存储器读取指令时的关键控制信号。当单片机从外部程序存储器读取指令时,PSEN 引脚会输出一个低电平脉冲。这个低电平信号用于选通外部程序存储器,使其将存储的程序指令输出到数据总线上,然后单片机就可以从数据总线上读取这些指令并执行。

P0口比较特殊,它要接上拉电阻才能驱动,至于什么是上拉电阻? 它是怎样的电路? 我们都会在数码管那个章节讲到的。

总结:以上引脚大家先做了解就足够了,后面学习到的时候,我都会进行详细的讲解的。

三,最小系统单片机的电路介绍

最小的单片机系统是由电源,主控芯片,晶振电路和复位电路组成的。先给大家看电路图:

 复位电路的作用:

  • 系统初始化
    • 复位电路的主要作用是使单片机内部的各个寄存器和电路恢复到初始状态。当单片机复位时,程序计数器(PC)被清零,这意味着单片机从程序存储器的起始地址(对于 51 单片机来说,一般是 0000H)开始执行程序。同时,其他特殊功能寄存器(SFR),如累加器 A、寄存器 B、PSW(程序状态字)等也会被初始化为固定的值。
    • 例如,PSW 寄存器在复位后被设置为 00H,这使得单片机进入初始的工作状态,如默认选择工作寄存器组 0。这种初始化功能确保了每次单片机上电或者手动复位后,系统都能以一个确定的、一致的状态开始运行,就像将系统进行了一次 “归零” 操作。
  • 解决程序异常情况
    • 比如,在一个工业控制环境中,周围可能存在较强的电磁干扰。当干扰导致单片机程序出错时,按下复位按钮,复位电路就能让单片机重新启动,避免了设备长时间故障,保障了系统的可靠性和稳定性。
    • 在单片机运行过程中,可能会由于干扰、程序错误或者其他突发情况导致系统出现异常。例如,程序进入了死循环,或者数据被错误地修改,导致系统无法正常工作。此时,复位电路可以通过外部复位信号(如手动复位按键)使单片机重新复位,恢复到正常的工作状态。

晶振电路的作用:

  • 提供时钟信号
    • 晶振电路为单片机提供了稳定的时钟信号。51 单片机内部的各种操作,如指令执行、数据传输、定时器 / 计数器工作等,都需要时钟信号来进行同步。时钟信号就像是单片机的 “心跳”,它决定了单片机的工作速度和时序。
    • 例如,51 单片机的一个机器周期是由 12 个时钟周期组成的。晶振频率的高低直接影响了单片机的机器周期时间。如果晶振频率为 12MHz,那么一个机器周期就是 1 微秒()。这种精确的时钟信号使得单片机能够按照设计好的时序和速度来执行程序指令。
  • 保证系统时序稳定
    • 单片机在与外部设备通信或者进行内部模块之间的协同工作时,需要严格的时序控制。晶振电路提供的稳定时钟信号是保证这些时序的基础。
    • 例如,在使用 51 单片机的定时器 / 计数器功能时,定时器的计数频率是由晶振频率经过内部时钟分频电路得到的。如果晶振频率不稳定,定时器的定时精度就会受到影响,进而导致与定时器相关的功能(如定时采样、定时控制等)出现错误。稳定的晶振电路可以确保这些功能的准确性和可靠性。

四,成为“点灯大师”

讲解了那么多的单片机的基础知识了,也该进行实操了。今天,咱们就来点亮人生中的第一颗LED灯。在点灯之前,咱先认识一下LED电路。

大家知道,我们能控制单片机的引脚输出高低电平 ,给引脚为逻辑1,它就会输出高电平,给0就会输出低电平。上图的LED灯是共阳极的,它的正极都接在一起,8颗LED灯分别与单片机的P1口接在一起,每一个引脚对应一颗LED灯。当我们给0时,就会输出低电平,LED就会正向的导通,LED就会亮,反之就灭。我们使用的时STC国产宏晶提供的芯片安装包,接下来我教大家怎么安装STC提供的芯片安装包,我们需要先下载好stc-isp烧录软件,这个文件我放在文章顶部了,各位可以自行下载。进行如下操作:

OK各位,接下来进行代码演示:

#include <STC89C5xRC.H>
void main()
{
	P10=0;      //STC的头文件里面,我们可以直接进行I/O的操作
}

进行头文件的展示: 

 各位至于Keil5怎么使用,怎么下载我就不再这多讲了,大家可以自行搜索相关视频。接下里看实验现象:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/955458.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Java技术栈 —— 如何把项目部署到公网?

如何把项目部署到公网&#xff1f; 一、准备工作1.1 获得一台云服务器1.2 安装SSH客户端 二、云服务器部署2.1 配置云服务器2.2 使用nginx部署1个或多个前端项目 三、访问测试四、访问控制 平常大部分人都是本地写写项目&#xff0c;然后通过localhost的方式去访问&#xff0c;…

春秋杯-WEB

SSTI 可以看到主页那里有个登录测试之后为ssti {{4*4}} fenjing梭哈即可得到payload {{((g.pop.__globals__.__builtins__.__import__(os)).popen(cat flag)).read()}}file_copy 看到题目名字为file_copy&#xff0c; 当输入路径时会返回目标文件的大小&#xff0c; 通…

基于微信小程序教学辅助系统设计与实现(LW+源码+讲解)

专注于大学生项目实战开发,讲解,毕业答疑辅导&#xff0c;欢迎高校老师/同行前辈交流合作✌。 技术范围&#xff1a;SpringBoot、Vue、SSM、HLMT、小程序、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容&#xff1a;…

项目开发实践——基于SpringBoot+Vue3实现的在线考试系统(六)

文章目录 一、考试管理模块实现1、添加考试功能实现1.1 页面设计1.2 前端功能实现1.3 后端功能实现1.4 效果展示2、考试管理功能实现2.1 页面设计2.2 前端功能实现2.3 后端功能实现2.3.1 后端查询接口实现2.3.2 后端编辑接口实现2.3.3 后端删除接口实现2.4 效果展示二、代码下载…

计算机网络 (43)万维网WWW

前言 万维网&#xff08;World Wide Web&#xff0c;WWW&#xff09;是Internet上集文本、声音、动画、视频等多种媒体信息于一身的信息服务系统。 一、基本概念与组成 定义&#xff1a;万维网是一个分布式、联机式的信息存储空间&#xff0c;通过超文本链接的方式将分散的信息…

如何学习数学 | 数学家如何思考

学习数学的关键在哪里&#xff1f; 原创 遇见数学 不少人面对数学都会觉得高深莫测&#xff0c;甚至非常枯燥乏味。 只有当你真正走入它的世界&#xff0c;才会发现里面蕴含着无尽的智慧和美感。要想推开这座数学的大门&#xff0c;需要的不仅仅是背公式&#xff0c;或者做一…

【Python通过UDP协议传输视频数据】(界面识别)

提示&#xff1a;界面识别项目 前言 随着网络通信技术的发展&#xff0c;视频数据的实时传输在各种场景中得到了广泛应用。UDP&#xff08;User Datagram Protocol&#xff09;作为一种无连接的协议&#xff0c;凭借其低延迟、高效率的特性&#xff0c;在实时性要求较高的视频…

ZNS SSD垃圾回收优化方案解读-2

四、Brick-ZNS 关键设计机制解析 Brick-ZNS 作为一种创新的 ZNS SSD 设计&#xff0c;聚焦于解决传统 ZNS SSDs 在垃圾回收&#xff08;GC&#xff09;过程中的数据迁移低效问题&#xff0c;其核心特色为存储内数据迁移与地址重映射功能。在应用场景中&#xff0c;针对如 Rock…

当PHP遇上区块链:一场奇妙的技术之旅

PHP 与区块链的邂逅 在技术的广袤宇宙中&#xff0c;区块链技术如同一颗耀眼的新星&#xff0c;以其去中心化、不可篡改、透明等特性&#xff0c;掀起了一场席卷全球的变革浪潮。众多开发者怀揣着对新技术的热忱与探索精神&#xff0c;纷纷投身于区块链开发的领域&#xff0c;试…

【原创】大数据治理入门(10)《数据资产化:从数据到价值》入门必看 高赞实用

数据资产化&#xff1a;从数据到价值 引言&#xff1a;数据资产化的概念 数据资产化&#xff08;Data Monetization&#xff09;是指将企业内部的各种数据转化为有价值的资产&#xff0c;通过数据的应用和分析提升企业的运营效率、降低成本、增加收入和优化决策。在大数据时代…

5-1 创建和打包AXI Interface IP

创建和打包AXI Interface IP的前流程和后流程 step 1 &#xff1a; 选择类型 1&#xff1a; 将当前的工程打包成IP 2&#xff1a; 将当前的BD工程打包成IP 3&#xff1a; 将指定的源码打包成IP 4&#xff1a; 创建一个新的AXI 接口IP 其中3和4是比较常用的&#xff0c;本次…

一文简要了解为什么需要RAG、核心原理与应用场景

欢迎来到AI应用探索&#xff0c;这里专注于探索AI应用。 一、为什么需要RAG&#xff0c;它解决了哪些问题 在自然语言处理领域&#xff0c;生成式预训练模型&#xff08;如GPT&#xff09;已经展示了强大的文本生成能力。然而&#xff0c;这些模型有以下局限性&#xff1a; 知…

很简单的K8s集群部署方法-KubeKey自动化部署

K8s集群部署方法-KubeKey自动化部署 文章后续KubeSphere部署安装&#xff0c;接入KubeKey安装的k8s集群 文章目录 K8s集群部署方法-KubeKey自动化部署 一.清理kubeadm安装的k8s集群缓存二.服务器安装前准备1.设置主机名2.配置时间同步3.关闭系统防火墙4.安装系统依赖5.关闭swap…

Linux之文件系统前世今生(一)

Linux在线1 Linux在线2 一、 基本概念 1.1 块&#xff08;Block&#xff09; 在计算机存储之图解机械硬盘这篇文章中我们提到过&#xff0c;磁盘读写的最小单位是扇区&#xff0c;也就是 512 Byte&#xff1b;很明显&#xff0c;每次读写的效率非常低。 为了提高IO效率&…

.netframwork模拟启动webapi服务并编写对应api接口

在.NET Framework环境中模拟启动Web服务&#xff0c;可以使用几种不同的方法。一个常见的选择是利用HttpListener类来创建一个简单的HTTP服务器&#xff0c;或者使用Owin/Katana库来自托管ASP.NET Web API或MVC应用。下面简要介绍Owin/Katana示例代码。这种方法更加灵活&#x…

【0x0052】HCI_Write_Extended_Inquiry_Response命令详解

目录 一、命令概述 二、命令格式及参数 2.1. HCI_Write_Extended_Inquiry_Response命令格式 2.2. FEC_Required 2.3. Extended_Inquiry_Response 三、生成事件及参数 3.1. HCI_Command_Complete 事件 3.2. Status 四、命令执行流程 4.1. 命令准备阶段(主机端) 4.2…

qt vs ios开发应用环境搭建和上架商店的记录

qt 下载链接如下 https://download.qt.io/new_archive/qt/5.14/5.14.2/qt-opensource-mac-x64-5.14.2.dmg 安装选项全勾选就行&#xff0c;这里特别说明下qt5.14.2/qml qt5.14.2对qml支持还算成熟&#xff0c;但很多特性还得qt6才行&#xff0c;这里用qt5.14.2主要是考虑到服…

Mockito+PowerMock+Junit单元测试

一、单元测试用途 1、日常开发团队要求规范&#xff0c;需要对开发需求代码进行单元测试并要求行覆盖率达到要求&#xff0c;DevOps流水线也会开设相关门禁阀值阻断代码提交&#xff0c;一般新增代码行覆盖率80%左右。 二、Mock测试介绍 1、Mock是为了解决不同的单元之间由于…

candb++ windows11运行报错,找不到mfc140.dll

解决问题记录 mfc140.dll下载 注意&#xff1a;放置位置别搞错了

【Spring Boot】Spring AOP 快速上手指南:开启面向切面编程新旅程

前言 ???本期讲解关于spring aop的入门介绍~~~ ??感兴趣的小伙伴看一看小编主页&#xff1a;-CSDN博客 ?? 你的点赞就是小编不断更新的最大动力 ??那么废话不多说直接开整吧~~ 目录 ???1.AOP概述 1.1什么是AOP ?1.2什么是Spring AOP ???2.Spring AOP入…