PyTorch快速入门教程【小土堆】之完整模型训练套路

视频地址完整的模型训练套路(一)_哔哩哔哩_bilibili

import torch
import torchvision
from model import *
from torch import nn
from torch.utils.data import DataLoader

# 准备数据集
train_data = torchvision.datasets.CIFAR10(root="CIFAR10", train=True, transform=torchvision.transforms.ToTensor(),
                                          download=True)
test_data = torchvision.datasets.CIFAR10(root="CIFAR10", train=False, transform=torchvision.transforms.ToTensor(),
                                         download=True)
# Length 长度
train_data_size = len(train_data)
test_data_size = len(test_data)
# 如果train_data_size=10,训练数据集的长度为:10
# print("训练数据集的长度为: {}".format(train_data_size))
# print("测试数据集的长度为: {}".format(test_data_size))

# 利用 DataLoader 来加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)

# 创建网络模型
tudui = Tudui()

# 损失函数
loss_fn = nn.CrossEntropyLoss()

# 优化器
learning_rate = 1e-2
optimizer = torch.optim.SGD(tudui.parameters(), lr=learning_rate)

# 设置训练网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 10

for i in range(epoch):
    print("--------第{}轮训练开始---------".format(i + 1))

    # 训练步骤开始
    for data in train_dataloader:
        imgs, targets = data
        outputs = tudui(imgs)
        loss = loss_fn(outputs, targets)

        # 优化器优化模型
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        total_train_step += 1
        if total_train_step % 100 == 0:
            print("训练次数:{},Loss:{}".format(total_train_step, loss.item()))

    # 测试步骤开始
    total_test_loss =0
    total_accuracy = 0
    with torch.no_grad():# 保证不会调优
        for data in test_dataloader:
            imgs, targets = data
            outputs = tudui(imgs)
            loss = loss_fn(outputs, targets)
            total_test_loss = total_test_loss + loss.item()
            accuracy = (outputs.argmax(1) == targets).sum()
            total_accuracy = total_accuracy + accuracy

    print("整体测试集上的Loss: {}".format(total_test_loss))
    print("整体测试集上的正确率:{}".format(total_accuracy / test_data_size))
    torch.save(tudui, "tudui_{}.pth".format(i))
    print("模型已保存")

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/945893.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

vue3之小白入门篇

感觉vue这种东西的学习门槛不低,如果原来是用mvc方式编程的话。 在开始想以一个较完整的demo系统开发来学习时,却发现登录页面是个问题。 这是因为网上教程很少从一个小白的角度来设计思考一个完整的系统需要哪些知识,面临哪些问题&#xf…

python版本的Selenium的下载及chrome环境搭建和简单使用

针对Python版本的Selenium下载及Chrome环境搭建和使用,以下将详细阐述具体步骤: 一、Python版本的Selenium下载 安装Python环境: 确保系统上已经安装了Python 3.8及以上版本。可以从[Python官方网站]下载并安装最新版本的Python,…

PyCharm安装激活教程(Jetbrains其它软件可参考)

PyCharm安装激活教程 PyCharm安装激活教程1.python基础环境安装配置1.1 下载及安装 2.PyCharm安装及激活教程2.1 学生/教师安装(有学信网/edu.cn邮箱)及激活2.1.1 安装2.1.2 激活 2.2 非教育用户安装及激活2.2.1 安装2.2.2 激活 参考文献 PyCharm安装激活…

第 29 章 - ES 源码篇 - 网络 IO 模型及其实现概述

前言 本文介绍了 ES 使用的网络模型,并介绍 transport,http 接收、响应请求的代码入口。 网络 IO 模型 Node 在初始化的时候,会创建网络模块。网络模块会加载 Netty4Plugin plugin。 而后由 Netty4Plugin 创建对应的 transports&#xff0…

如何通过 Konga 可视化界面配置 Kong Key-Auth 实现Open API Key 认证

言简意赅的讲解 Konga 可视化配置 Kong Key-Auth解决的痛点 在现代微服务架构中,API 网关常常用于集中管理 API 的认证和授权。Kong 是一款非常流行的 API 网关,它提供了丰富的插件支持,而 Key Authentication(Key-Auth&#xff…

C++——deque的了解和使用

目录 引言 标准库中的deque 一、deque的基本概念 二、deque的常用接口 1.deque的迭代器 2.deque的初始化 3.deque的容量操作 3.1 有效长度和容量大小 3.2 有效长度和容量操作 4.deque的访问操作 5.deque的修改操作 三、deque的应用场景 结束语 引言 在C中&#x…

使用R语言绘制交互地图

在现代地理信息系统(GIS)应用中,交互地图成为了数据展示的重要工具。相比传统的静态地图,交互地图不仅能够更生动地呈现空间数据,还能增强用户的参与感和数据探索性。本文将介绍如何使用R语言绘制交互地图,…

支持向量机入门指南:从原理到实践

目录 1 支持向量机的基本概念 1.2 数学表达 2 间隔与支持向量 2.1 几何间隔 2.2 支持向量的概念 2.3 规范化超平面 2.4 支持向量的深入分析 2.4.1 支持向量的特征 2.4.2 支持向量的作用 2.4.3 支持向量的代数表示 2.5 KKT条件 3 最优化问题 3.1 问题的形成 3.2 规…

【时时三省】(C语言基础)动态内存函数calloc

山不在高,有仙则名。水不在深,有龙则灵。 ----CSDN 时时三省 calloc calloc函数也用来动态内存分配 原型如下: void* calloc(size_t num, size_t size); 它们两个的区别是 它是需要两个参数…

Flutter中添加全局防护水印的实现

随着版权意识的加强,越来越多的应用开始在应用内部增加各种各样的水印信息,防止核心信息泄露,便于朔源。 效果如下: 在Flutter中增加全局水印的方式,目前有两种实现。 方案一,在native层添加一个遮罩层&a…

uniapp - 小程序实现摄像头拍照 + 水印绘制 + 反转摄像头 + 拍之前显示时间+地点 + 图片上传到阿里云服务器

前言 uniapp,碰到新需求,反转摄像头,需要在打卡的时候对上传图片加上水印,拍照前就显示当前时间日期地点,拍摄后在呈现刚才拍摄的图加上水印,最好还需要将图片上传到阿里云。 声明 水印部分代码是借鉴的…

图像处理-Ch7-小波函数

个人博客!无广告观看,因为这节内容太多了,有点放不下,分了三节 文章目录 多分辨率展开(Multi-resolution Expansions)序列展开(Series Expansions)尺度函数(Scaling Function)例:哈尔尺度函数(Haar scaling func)多分…

本地小主机安装HomeAssistant开源智能家居平台打造个人AI管家

文章目录 前言1. 添加镜像源2. 部署HomeAssistant3. HA系统初始化配置4. HA系统添加智能设备4.1 添加已发现的设备4.2 添加HACS插件安装设备 5. 安装cpolar内网穿透5.1 配置HA公网地址 6. 配置固定公网地址 前言 大家好!今天我要向大家展示如何将一台迷你的香橙派Z…

Rocky Linux下安装meld

背景介绍: meld是一款Linux系统下的用于 文件夹和文件的比对软件,非常常用; 故障现象: 输入安装命令后,sudo yum install meld,报错。 12-31 22:12:17 ~]$ sudo yum install meld Last metadata expirat…

数据结构与算法之动态规划: LeetCode 337. 打家劫舍 III (Ts版)

打家劫舍 III https://leetcode.cn/problems/house-robber-iii/description/ 描述 小偷又发现了一个新的可行窃的地区。这个地区只有一个入口,我们称之为 root除了 root 之外,每栋房子有且只有一个“父“房子与之相连一番侦察之后,聪明的小…

chatwoot 开源客服系统搭建

1. 准备开源客服系统(我是用的Chatwoot ) 可以选择以下开源客服系统作为基础: Chatwoot: 功能强大,支持多渠道客户对接,(支持app,web)。Zammad: 现代的开源工单系统。FreeScout: 免…

sentinel-请求限流、线程隔离、本地回调、熔断

请求限流:控制QPS来达到限流的目的 线程隔离:控制线程数量来达到限流的目录 本地回调:当线程被限流、隔离、熔断之后、就不会发起远程调用、而是使用本地已经准备好的回调去提醒用户 服务熔断:熔断也叫断路器,当失败、…

鸿蒙开发-ArkTS中使用Path组件

在ArkTS中使用Path组件,可以按照以下步骤进行: 一、了解Path组件 Path组件用于根据绘制路径生成封闭的自定义形状。该组件从API Version 7开始支持,并随着后续版本的更新可能增加新的功能。Path组件支持多种属性和方法,用于定义…

高效管理 Nginx 的利器:nginxWebUI 指南和 Docker 部署安装过程

前言 Nginx WebUI 是一个为 Nginx 提供图形化管理界面的工具。通过 WebUI,用户可以轻松管理 Nginx 配置,而无需直接编辑配置文件,尤其适合新手用户和频繁修改配置的场景。 官网文档:nginxWebUI - 文档 本文将分享为什么选择 ngin…

Linux网络 | 理解Web路径 以及 实现一个简单的helloworld网页

前言:本节内容承接上节课的http相关的概念, 主要是实现一个简单的接收http协议请求的服务。这个程序对于我们理解后面的http协议的格式,报头以及网络上的资源的理解, 以及本节web路径等等都有着重要作用。 可以说我们就用代码来理…