图像处理-Ch7-小波函数

个人博客!无广告观看,因为这节内容太多了,有点放不下,分了三节

文章目录

    • 多分辨率展开(Multi-resolution Expansions)
      • 序列展开(Series Expansions)
      • 尺度函数(Scaling Function)
        • 例:哈尔尺度函数(Haar scaling func)
        • 多分辨率分析的四项基本要求
      • 小波函数(Wavelet Function)
        • 尺度和小波子空间之间的关系
        • Haar小波函数
    • 一维小波变换(Wavelet Transforms in One Dimension)

多分辨率展开(Multi-resolution Expansions)

前面介绍了三种图像处理技术:图像金字塔、子带编码、哈尔变换。这在多分辨率分析(Multi-resolution Analysis, MRA)中会用到。

在多分辨率分析中,尺度函数被用于建立某一函数或是图像的一系列近似值,小波函数对相邻近似值之间的差异进行编码。

Q: 尺度函数、小波函数?

A: 尺度函数类似于低通滤波器的作用、小波函数描述高通滤波器的作用。

序列展开(Series Expansions)

一个信号或函数 f ( x ) f(x) f(x)通常被分解为一系列展开函数的线性组合,即:
f ( x ) = ∑ k α k φ k ( x ) f(x)=\sum_{k}\alpha_{k}\varphi_{k}(x) f(x)=kαkφk(x)
如果扩展是唯一的,即对于任何给定的 f ( x ) f(x) f(x)只有一组 α k \alpha_{k} αk,则 φ k ( x ) \varphi_{k}(x) φk(x)称为基函数,扩展集 { φ k ( x ) } \{\varphi_{k}(x)\} {φk(x)}称为可如此表示的函数类的基。

可表示的函数形成一个函数(张成)空间,称为扩展集的闭包(closed span),记为:
V = S p a n k { φ k ( x ) } ‾ V = \overline{Span_k\{\varphi_{k}(x)\}} V=Spank{φk(x)}
对于任意张成空间 V V V和相应的扩展集 { φ k ( x ) } \{\varphi_{k}(x)\} {φk(x)},存在一组对偶函数 { φ ~ k ( x ) } \{\tilde{\varphi}_{k}(x)\} {φ~k(x)},可用于通过取对偶 φ ~ k ( x ) \tilde{\varphi}_{k}(x) φ~k(x) f ( x ) f(x) f(x)的积分内积来计算系数 { α k } \{\alpha_{k}\} {αk},即:
α k = ⟨ φ ~ k ( x ) , f ( x ) ⟩ = ∫ φ ~ k ∗ ( x ) f ( x ) d x \alpha_{k}=\langle\tilde{\varphi}_{k}(x),f(x)\rangle=\int\tilde{\varphi}_{k}^{*}(x)f(x)dx αk=φ~k(x),f(x)⟩=φ~k(x)f(x)dx

计算系数 α k \alpha_{k} αk涉及三种情况、但基本都是正交小波、只用情况1.

情况I:如果扩展函数形成 V V V的正交基,即:
⟨ φ j ( x ) , φ k ( x ) ⟩ = δ j k = { 0 j ≠ k 1 j = k \langle\varphi_{j}(x),\varphi_{k}(x)\rangle=\delta_{jk}=\begin{cases}0&j\neq k\\1&j = k\end{cases} φj(x),φk(x)⟩=δjk={01j=kj=k
则基及其对偶是等价的。因此 α k = ⟨ φ k ( x ) , f ( x ) ⟩ \alpha_{k}=\langle\varphi_{k}(x),f(x)\rangle αk=φk(x),f(x)⟩

尺度函数(Scaling Function)

现在考虑由实数、平方可积函数 φ ( x ) \varphi(x) φ(x)的整数平移和二进制尺度组成的扩展函数集 φ j , k ( x ) \varphi_{j,k}(x) φj,k(x) φ j , k ( x ) \varphi_{j,k}(x) φj,k(x)称为尺度函数。
φ j , k ( x ) = 2 j / 2 φ ( 2 j x − k ) \varphi_{j,k}(x)=2^{j/2}\varphi(2^{j}x - k) φj,k(x)=2j/2φ(2jxk)
对于所有 j , k ∈ Z j,k\in Z j,kZ φ j , k ( x ) ∈ L 2 ( R ) \varphi_{j,k}(x)\in L^{2}(R) φj,k(x)L2(R)都成立;此时 k k k确定 φ j , k ( x ) \varphi_{j,k}(x) φj,k(x)沿 x x x轴的位置, j j j确定 φ j , k ( x ) \varphi_{j,k}(x) φj,k(x)的宽度, 2 j / 2 2^{j/2} 2j/2控制其高度或幅度。

j j j 增大时, 2 j 2^{j} 2j 变大,意味着 φ ( 2 j x − k ) \varphi(2^{j}x - k) φ(2jxk)中的 x x x被压缩,即函数在 x x x 轴上的变化变得更快,宽度减小

通过适当选择基函数 φ ( x ) \varphi(x) φ(x) { φ j , k ( x ) } \{\varphi_{j,k}(x)\} {φj,k(x)}可以张成 L 2 ( R ) L^{2}(R) L2(R),即所有可度量的平方可积函数的集合。

对于特定值 j = j 0 j = j_{0} j=j0,扩展集 { φ j 0 , k ( x ) } \{\varphi_{j_{0},k}(x)\} {φj0,k(x)} { φ j , k ( x ) } \{\varphi_{j,k}(x)\} {φj,k(x)}的子集。可以将该子空间定义为:
V j 0 = S p a n { φ j 0 , k ( x ) } ‾ V_{j_{0}}=\overline{Span\{\varphi_{j_{0},k}(x)\}} Vj0=Span{φj0,k(x)}
由于 V j 0 V_{j_{0}} Vj0 φ j 0 , k ( x ) \varphi_{j_{0},k}(x) φj0,k(x) k k k上的张成,如果 f ( x ) ∈ V j 0 f(x)\in V_{j_{0}} f(x)Vj0,它可以写成:
f ( x ) = ∑ k α k φ j 0 , k ( x ) f(x)=\sum_{k}\alpha_{k}\varphi_{j_{0},k}(x) f(x)=kαkφj0,k(x)
一般地,对于任何 j j j,我们将在 k k k上张成的子空间记为:
V j = S p a n { φ j , k ( x ) } ‾ V_{j}=\overline{Span\{\varphi_{j,k}(x)\}} Vj=Span{φj,k(x)}

例:哈尔尺度函数(Haar scaling func)

哈尔尺度函数是高度为1、宽度为1的尺度函数。
φ ( x ) = { 1 , 0 ≤ x ≤ 1 0 , o t h e r w i s e \varphi(x)=\begin{cases}1,&0\le x\le 1\\ 0,&otherwise \end{cases} φ(x)={1,0,0x1otherwise
来自Haar基函数。尺度=1时的宽度是尺度=0时的一半;对于x上已知间隔,尺度=1的尺度函数时尺度=0的2倍(纵坐标的值)。(f): f ( x ) = 1 2 φ 1 , 0 ( x ) + φ 1 , 1 ( x ) − 1 4 φ 1 , 4 ( x ) f(x)=\frac 1{2}\varphi_{1,0}(x)+\varphi_{1,1}(x)-\frac 1 4 \varphi_{1,4}(x) f(x)=21φ1,0(x)+φ1,1(x)41φ1,4(x)

image-20241224164826414

上图例子说明:

  1. 增加 j j j的值( j ↑ j \uparrow j:意味着函数被缩小,即 φ j , k ( x ) \varphi_{j,k}(x) φj,k(x)的宽度变窄,能够捕捉到更细微的细节。同时, V j V_j Vj容量增大,能够包含更多具有小尺度变化的函数。
  2. 减少 j j j的值( j ↓ j \downarrow j:意味着函数被放大,即 φ j , k ( x ) \varphi_{j,k}(x) φj,k(x)的宽度变宽,主要捕捉到整体的、低频的信息
多分辨率分析的四项基本要求

在上面的例子中,简单的尺度函数遵循多分辨率分析的如下4个基本要求:

1.尺度函数与其积分变换正交。2.由尺度函数在低尺度上张成的子空间嵌套在高尺度上张成的子空间中。3.唯一在所有 V i V_{i} Vi中都存在的函数是 f ( x ) = 0 f(x) = 0 f(x)=04.任何函数都可以以任意精度表示
Haar尺度函数是紧支撑的,即在一个有限区间(支撑)外函数值为0。$\dots \subset V_{-1}\subset V_0 \subset V_1 \subset V_2\subset \cdots $, 每个子空间 V j V_j Vj都包含了比前一个子空间 V j − 1 V_{j-1} Vj1更多的细节信息。这就像是从模糊到清晰,一步步深入地观察信号或图像。 V − ∞ = 0 V_{-\infty}=0 V=0 V ∞ = L 2 ( R ) V_{\infty}=L^{2}(R) V=L2(R)

在这些条件下,子空间 V j V_{j} Vj的展开函数可以表示为子空间 V j + 1 V_{j + 1} Vj+1的展开函数的加权和,即:
φ j , k ( x ) = ∑ n α n φ j + 1 , n ( x ) \varphi_{j,k}(x)=\sum_{n}\alpha_{n}\varphi_{j + 1,n}(x) φj,k(x)=nαnφj+1,n(x)
将变量 α n \alpha_{n} αn变换为 h φ ( n ) h_{\varphi}(n) hφ(n),进一步得到:
φ j , k ( x ) = ∑ n h φ ( n ) 2 ( j + 1 ) / 2 φ ( 2 ( j + 1 ) x − n ) \varphi_{j,k}(x)=\sum_{n}h_{\varphi}(n)2^{(j + 1)/2}\varphi(2^{(j + 1)}x - n) φj,k(x)=nhφ(n)2(j+1)/2φ(2(j+1)xn)
对于 φ ( x ) = φ 0 , 0 ( x ) \varphi(x)=\varphi_{0,0}(x) φ(x)=φ0,0(x),得到更简单的表达式:
φ ( x ) = ∑ n h φ ( n ) 2 φ ( 2 x − n ) \varphi(x)=\sum_{n}h_{\varphi}(n)\sqrt{2}\varphi(2x - n) φ(x)=nhφ(n)2 φ(2xn)
h φ ( n ) h_{\varphi}(n) hφ(n)被称为尺度函数系数, h φ h_{\varphi} hφ被称为尺度向量。该MRA方程表明任何子空间的扩展函数都可以由自身的双分辨率副本构建。

Haar函数的尺度函数系数是 h φ ( 0 ) = h φ ( 1 ) = 1 2 h_{\varphi}(0)=h_{\varphi}(1)=\frac{1}{\sqrt{2}} hφ(0)=hφ(1)=2 1,所以MRA方程是:
φ ( x ) = 1 2 [ 2 φ ( 2 x ) ] + 1 2 [ 2 φ ( 2 x − 1 ) ] φ ( x ) = φ ( 2 x ) + φ ( 2 x − 1 ) \begin{align} \varphi(x)&=\frac{1}{\sqrt{2}}[\sqrt{2}\varphi(2x)]+\frac{1}{\sqrt{2}}[\sqrt{2}\varphi(2x - 1)]\\ \varphi(x)&=\varphi(2x)+\varphi(2x - 1) \end{align} φ(x)φ(x)=2 1[2 φ(2x)]+2 1[2 φ(2x1)]=φ(2x)+φ(2x1)

小波函数(Wavelet Function)

给定一个满足上述MRA要求的尺度函数(scaling function),我们可以定义一个小波函数 ψ ( x ) \psi(x) ψ(x),它与它的整数平移和二进制尺度一起,跨越了任意两个相邻尺度子空间 V j V_j Vj V j + 1 V_{j + 1} Vj+1 之间的差异。

定义小波函数集:
ψ j , k ( x ) = 2 j / 2 ψ ( 2 j x − k ) \psi_{j,k}(x)=2^{j/2}\psi(2^{j}x - k) ψj,k(x)=2j/2ψ(2jxk)
可以看见这个形式与尺度函数很相似,定义小波子空间:
W j = S p a n k { ψ j , k ( x ) } ‾ W_j=\overline{Span_k\{\psi_{j,k}(x)\}} Wj=Spank{ψj,k(x)}
注意: 如果 f ( x ) ∈ W j f(x)\in W_j f(x)Wj,则有 f f f可以被该空间的基唯一的线性表示。
f ( x ) = ∑ k α k ψ j , k ( x ) f(x)=\sum_{k}\alpha_{k}\psi_{j,k}(x) f(x)=kαkψj,k(x)

尺度和小波子空间之间的关系

尺度和小波函数子空间的关系是:
V j + 1 = V j ⊕ W j V_{j + 1}=V_j\oplus W_j Vj+1=VjWj
其中 ⊕ \oplus 表示空间的直和(类似于集合的并集)。

V j V_j Vj V j + 1 V_{j + 1} Vj+1 中的正交补是 W j W_j Wj,并且 V j V_j Vj 的所有元素与 W j W_j Wj 的元素正交,即 ⟨ φ j , k ( x ) , ψ j , l ( x ) ⟩ = 0 \langle\varphi_{j,k}(x),\psi_{j,l}(x)\rangle = 0 φj,k(x),ψj,l(x)⟩=0,对于所有合适的 j , k , l ∈ Z j,k,l\in Z j,k,lZ

所有可度量、平方可积函数的空间为:
L 2 ( R ) = V 0 ⊕ W 0 ⊕ W 1 ⊕ ⋯ or L 2 ( R ) = V 1 ⊕ W 1 ⊕ W 2 ⊕ ⋯ or L 2 ( R ) = ⋯ ⊕ W − 2 ⊕ W − 1 ⊕ V 0 ⊕ W 0 ⊕ W 1 ⊕ W 2 ⊕ ⋯ \begin{align} L^{2}(R)&=V_0\oplus W_0\oplus W_1\oplus\cdots\\ \text{or}\quad L^{2}(R)&=V_1\oplus W_1\oplus W_2\oplus\cdots\\ \text{or}\quad L^{2}(R)&=\cdots\oplus W_{-2}\oplus W_{-1}\oplus V_0\oplus W_0\oplus W_1\oplus W_2\oplus\cdots \end{align} L2(R)orL2(R)orL2(R)=V0W0W1=V1W1W2=W2W1V0W0W1W2
有一个通用结果, 其中 j 0 j_0 j0 是任意起始尺度。
L 2 ( R ) = V j 0 ⊕ W j 0 ⊕ W j 0 + 1 ⊕ ⋯ L^{2}(R)=V_{j_0}\oplus W_{j_0}\oplus W_{j_0 + 1}\oplus\cdots L2(R)=Vj0Wj0Wj0+1
由于小波空间存在于由下一个更高分辨率尺度函数张成的空间内,任何小波函数也可以表示为移位的、双分辨率尺度函数的加权和,即:
ψ ( x ) = ∑ n h ψ ( n ) 2 φ ( 2 x − n ) \psi(x)=\sum_{n}h_{\psi}(n)\sqrt{2}\varphi(2x - n) ψ(x)=nhψ(n)2 φ(2xn)
其中 h ψ ( n ) h_{\psi}(n) hψ(n) 被称为小波函数系数, h ψ h_{\psi} hψ 是小波向量。

利用小波张成正交补空间且整数小波平移是正交的条件,可以证明由Burrus、Gopinath和Guo [1998]提出的:
h ψ ( n ) = ( − 1 ) n h φ ( 1 − n ) h_{\psi}(n)=(-1)^{n}h_{\varphi}(1 - n) hψ(n)=(1)nhφ(1n)

Haar小波函数

对于Haar小波,相应的小波向量和小波函数是:
h ψ ( 0 ) = ( − 1 ) 0 h φ ( 1 − 0 ) = 1 2 h ψ ( 1 ) = ( − 1 ) 1 h φ ( 1 − 1 ) = − 1 2 ψ ( x ) = ∑ n h ψ ( n ) 2 φ ( 2 x − n ) = φ ( 2 x ) − φ ( 2 x − 1 ) = { 1 , 0 ≤ x < 0.5 − 1 , 0.5 ≤ x < 1 0 , o t h e r w i s e \begin{align} h_{\psi}(0)&=(-1)^{0}h_{\varphi}(1 - 0)=\frac{1}{\sqrt{2}}\\ h_{\psi}(1)&=(-1)^{1}h_{\varphi}(1 - 1)=-\frac{1}{\sqrt{2}}\\\\ \psi(x)&=\sum_{n}h_{\psi}(n)\sqrt{2}\varphi(2x - n)\\&=\varphi(2x)-\varphi(2x - 1)\\ &=\begin{cases}1,&0\le x< 0.5\\-1,&0.5\le x< 1\\0,& otherwise\end{cases} \end{align} hψ(0)hψ(1)ψ(x)=(1)0hφ(10)=2 1=(1)1hφ(11)=2 1=nhψ(n)2 φ(2xn)=φ(2x)φ(2x1)= 1,1,0,0x<0.50.5x<1otherwise

例:

  • (a)原小波函数 ψ 0 , 0 ( x ) \psi_{0,0}(x) ψ0,0(x)、(b) ψ 0 , 2 ( x ) \psi_{0,2}(x) ψ0,2(x)、© ψ 1 , 0 ( x ) \psi_{1,0}(x) ψ1,0(x):对于空间 W 1 W_1 W1, 小波 ψ 1 , 0 ( x ) 小波\psi_{1,0}(x) 小波ψ1,0(x)比针对 W 0 W_0 W0的小波 ψ 0 , 2 ( x ) \psi_{0,2}(x) ψ0,2(x)窄,这说明它能表示更加细微的细节。

  • (d)显示了在子空间 V 1 V_1 V1而不在子空间 V 0 V_0 V0中的函数。该函数在前述例子中曾考虑过[见上图Haar尺度函数(f)]。虽然该函数不能在 V 0 V_0 V0中精确表示,但它可以用 V 0 V_0 V0 W 0 W_0 W0的展开函数进行展开。展开结果如下:
    f ( x ) = f a ( x ) + f d ( x ) f a ( x ) = 3 2 4 φ 0 , 0 ( x ) − 2 8 φ 0 , 2 ( x ) f d ( x ) = − 2 4 ψ 0 , 0 ( x ) − 2 8 ψ 0 , 2 ( x ) f(x) = f_a(x) + f_d(x)\\ f_a(x) = \frac{3\sqrt{2}}{4}\varphi_{0,0}(x) - \frac{\sqrt{2}}{8}\varphi_{0,2}(x)\\ f_d(x) = \frac{-\sqrt{2}}{4}\psi_{0,0}(x) - \frac{\sqrt{2}}{8}\psi_{0,2}(x) f(x)=fa(x)+fd(x)fa(x)=432 φ0,0(x)82 φ0,2(x)fd(x)=42 ψ0,0(x)82 ψ0,2(x)
    f a ( x ) f_a(x) fa(x) f ( x ) f(x) f(x)使用 V 0 V_0 V0尺度函数的近似,而 f d ( x ) f_d(x) fd(x) f ( x ) − f a ( x ) f(x) - f_a(x) f(x)fa(x)的差,用 W 0 W_0 W0小波和表示。这两个展开式,如(e)和(f)所示,将 f ( x ) f(x) f(x)用类似高通和低通滤波器的方法分成两部分。 f a ( x ) f_a(x) fa(x)的低频部分在 f a ( x ) f_a(x) fa(x)中得到, f a ( x ) f_a(x) fa(x)给出了 f ( x ) f(x) f(x)在每个积分区间上的平均值,而高频细节则在 f d ( x ) f_d(x) fd(x)中编码。

image-20241225112021739

一维小波变换(Wavelet Transforms in One Dimension)

小波函数作为一系列的函数族,需要满足以下两个约束条件:

  1. 均值为0:(容许条件,小波函数不应该含有0频分量=函数的平均值)
    ∫ − ∞ ∞ Ψ ( t ) d t = 0 \int^{\infty}_{-\infty}\Psi(t)dt=0 Ψ(t)dt=0
    在傅里叶变换中,我们使用正弦函数展开。可以看到正弦函数也满足这个条件。BUT,正弦函数不满足下面这个条件。

  2. 平方可积(有限能量):
    ∫ − ∞ ∞ ∣ Ψ ( t ) ∣ 2 d t < ∞ \int^{\infty}_{-\infty}|\Psi(t)|^2dt<\infty ∣Ψ(t)2dt<

文中提及的可度量、平方可积,意思是要满足上面的两个条件。

小波序列展开(Wavelet series expansion)

我们定义函数 f ( x ) ∈ L 2 ( R ) f(x)\in L^{2}(R) f(x)L2(R)相对于小波函数 ψ ( x ) \psi(x) ψ(x)和尺度函数 φ ( x ) \varphi(x) φ(x)的小波级数展开为:
f ( x ) = ∑ k c j 0 ( k ) φ j 0 , k ( x ) + ∑ j = j 0 ∞ ∑ k d j ( k ) ψ j , k ( x ) f(x)=\sum_{k}c_{j_{0}}(k)\varphi_{j_{0},k}(x)+\sum_{j = j_{0}}^{\infty}\sum_{k}d_{j}(k)\psi_{j,k}(x) f(x)=kcj0(k)φj0,k(x)+j=j0kdj(k)ψj,k(x)
其中 j 0 j_{0} j0是任意起始尺度, c j 0 ( k ) c_{j_{0}}(k) cj0(k)通常被称为近似系数, d j ( k ) d_{j}(k) dj(k)被称为细节系数。

这说明:任何可度量的、平方可积的一维函数都可以表示为 j ≥ j 0 j\ge j_0 jj0 V j 0 V_{j0} Vj0尺度函数和 W j W_j Wj小波的加权和。

如果展开函数形成一个正交基或紧支撑(=尺度函数与其积分变换正交。这是常见情况),展开系数通过以下方式计算:
c j 0 ( k ) = ⟨ f ( x ) , φ j 0 , k ( x ) ⟩ = ∫ f ( x ) φ j 0 , k ( x ) d x d j ( k ) = ⟨ f ( x ) , ψ j , k ( x ) ⟩ = ∫ f ( x ) ψ j , k ( x ) d x c_{j_{0}}(k)=\langle f(x),\varphi_{j_{0},k}(x)\rangle=\int f(x)\varphi_{j_{0},k}(x)dx\\ d_{j}(k)=\langle f(x),\psi_{j,k}(x)\rangle=\int f(x)\psi_{j,k}(x)dx cj0(k)=f(x),φj0,k(x)⟩=f(x)φj0,k(x)dxdj(k)=f(x),ψj,k(x)⟩=f(x)ψj,k(x)dx

例: y = x 2 y=x^2 y=x2的哈尔小波级数展开

考虑如下的简单函数,计算使用Haar小波表示它的展开系数。
y = { x 2 , 0 ≤ x < 1 0 , otherwise y = \begin{cases} x^{2},&0\leq x < 1\\ 0,&\text{otherwise} \end{cases} y={x2,0,0x<1otherwise
解:令 j 0 = 0 j_{0}=0 j0=0
c 0 ( 0 ) = ∫ 0 1 x 2 φ 0 , 0 ( x ) d x = ∫ 0 1 x 2 d x = x 3 3 ∣ 0 1 = 1 3 d 0 ( 0 ) = ∫ 0 1 x 2 ψ 0 , 0 ( x ) d x = ∫ 0 0.5 x 2 d x − ∫ 0.5 1 x 2 d x = − 1 4 d 1 ( 0 ) = ∫ 0 1 x 2 ψ 1 , 0 ( x ) d x = ∫ 0 0.25 x 2 2 d x − ∫ 0.25 0.5 x 2 2 d x = − 2 32 d 1 ( 1 ) = ∫ 0 1 x 2 ψ 1 , 1 ( x ) d x = ∫ 0.5 0.75 x 2 2 d x − ∫ 0.75 1 x 2 2 d x = − 3 2 32 \begin{align} c_{0}(0)&=\int_{0}^{1}x^{2}\varphi_{0,0}(x)dx=\int_{0}^{1}x^{2}dx=\frac{x^{3}}{3}\Big|_{0}^{1}=\frac{1}{3}\\ d_{0}(0)&=\int_{0}^{1}x^{2}\psi_{0,0}(x)dx=\int_{0}^{0.5}x^{2}dx-\int_{0.5}^{1}x^{2}dx=-\frac{1}{4}\\ d_{1}(0)&=\int_{0}^{1}x^{2}\psi_{1,0}(x)dx=\int_{0}^{0.25}x^{2}\sqrt{2}dx-\int_{0.25}^{0.5}x^{2}\sqrt{2}dx=-\frac{\sqrt{2}}{32}\\ d_{1}(1)&=\int_{0}^{1}x^{2}\psi_{1,1}(x)dx=\int_{0.5}^{0.75}x^{2}\sqrt{2}dx-\int_{0.75}^{1}x^{2}\sqrt{2}dx=-\frac{3\sqrt{2}}{32} \end{align} c0(0)d0(0)d1(0)d1(1)=01x2φ0,0(x)dx=01x2dx=3x3 01=31=01x2ψ0,0(x)dx=00.5x2dx0.51x2dx=41=01x2ψ1,0(x)dx=00.25x22 dx0.250.5x22 dx=322 =01x2ψ1,1(x)dx=0.50.75x22 dx0.751x22 dx=3232
将这些值带入小波级数展开式,有:

image-20241225103135159

image-20241225103229492

离散小波变换(Discrete Wavelet Transforms)

小波级数展开将单个连续变量的函数映射为离散系数序列。如果被展开的函数是离散的,例如连续函数 f ( x ) f(x) f(x)的样本,则展开的系数是函数的离散小波变换( DWT )、展开本身是函数的离散小波反变换。

DWT变换对定义为:
W φ ( j 0 , k ) = 1 M ∑ x f ( x ) φ j 0 , k ( x ) W ψ ( j , k ) = 1 M ∑ x f ( x ) ψ j , k ( x ) for  j ≥ j 0 f ( x ) = 1 M ∑ k W φ ( j 0 , k ) φ j 0 , k ( x ) + 1 M ∑ j = j 0 ∞ ∑ k W ψ ( j , k ) ψ j , k ( x ) W_{\varphi}(j_{0},k)=\frac{1}{\sqrt{M}}\sum_{x}f(x)\varphi_{j_{0},k}(x)\\ W_{\psi}(j,k)=\frac{1}{\sqrt{M}}\sum_{x}f(x)\psi_{j,k}(x) \quad \text{for } j\geq j_{0}\\\\ f(x)=\frac{1}{\sqrt{M}}\sum_{k}W_{\varphi}(j_{0},k)\varphi_{j_{0},k}(x)+\frac{1}{\sqrt{M}}\sum_{j = j_{0}}^{\infty}\sum_{k}W_{\psi}(j,k)\psi_{j,k}(x) Wφ(j0,k)=M 1xf(x)φj0,k(x)Wψ(j,k)=M 1xf(x)ψj,k(x)for jj0f(x)=M 1kWφ(j0,k)φj0,k(x)+M 1j=j0kWψ(j,k)ψj,k(x)
这里 f ( x ) f(x) f(x) φ j 0 , k ( x ) \varphi_{j_{0},k}(x) φj0,k(x) ψ j , k ( x ) \psi_{j,k}(x) ψj,k(x)是离散变量 x = 0 , 1 , ⋯   , M − 1 x = 0,1,\cdots,M - 1 x=0,1,,M1的函数; W φ ( j 0 , k ) W_{\varphi}(j_{0},k) Wφ(j0,k), W ψ ( j , k ) W_{\psi}(j,k) Wψ(j,k)对应上面小波序列展开中的 c j 0 ( k ) c_{j_{0}}(k) cj0(k)近似系数(低频部分), d j ( k ) d_{j}(k) dj(k)细节系数(高频部分)。

第四版:感觉更简单一点点。

与傅里叶级数展开类似,上一节的小波级数展开将单个连续变量的函数映射为一系列离散系数。如果被展开的函数是离散的,那么展开的系数就是它们的离散小波变换(DWT),而展开式本身就是函数的逆离散小波变换。

j 0 = 0 j_0 = 0 j0=0,并将注意力限制在 N N N为2的幂次方(即 N = 2 J N = 2^J N=2J)的 N N N点离散函数上,我们得到:
f ( x ) = 1 N [ T φ ( 0 , 0 ) φ ( x ) + ∑ j = 0 J − 1 ∑ k = 0 2 j − 1 T ψ ( j , k ) ψ j , k ( x ) ] f(x)=\frac{1}{\sqrt{N}}\left[T_{\varphi}(0,0)\varphi(x)+\sum_{j = 0}^{J - 1}\sum_{k = 0}^{2^{j}-1}T_{\psi}(j,k)\psi_{j,k}(x)\right] f(x)=N 1 Tφ(0,0)φ(x)+j=0J1k=02j1Tψ(j,k)ψj,k(x)
其中:
T φ ( 0 , 0 ) = ⟨ f ( x ) , φ 0 , 0 ( x ) ⟩ = ⟨ f ( x ) , φ ( x ) ⟩ = 1 N ∑ x = 0 N − 1 f ( x ) φ ∗ ( x ) T ψ ( j , k ) = ⟨ f ( x ) , ψ j , k ( x ) ⟩ = 1 N ∑ x = 0 N − 1 f ( x ) ψ j , k ∗ ( x ) ( 7 − 138 ) T_{\varphi}(0,0)=\langle f(x),\varphi_{0,0}(x)\rangle=\langle f(x),\varphi(x)\rangle=\frac{1}{\sqrt{N}}\sum_{x = 0}^{N - 1}f(x)\varphi^{*}(x) \\ T_{\psi}(j,k)=\langle f(x),\psi_{j,k}(x)\rangle=\frac{1}{\sqrt{N}}\sum_{x = 0}^{N - 1}f(x)\psi_{j,k}^{*}(x) \quad (7 - 138) Tφ(0,0)=f(x),φ0,0(x)⟩=f(x),φ(x)⟩=N 1x=0N1f(x)φ(x)Tψ(j,k)=f(x),ψj,k(x)⟩=N 1x=0N1f(x)ψj,k(x)(7138)
其中 j = 0 , 1 , ⋯   , J − 1 j = 0,1,\cdots,J - 1 j=0,1,,J1 k = 0 , 1 , ⋯   , 2 j − 1 k = 0,1,\cdots,2^{j}-1 k=0,1,,2j1。由上面公式定义的变换系数分别被称为近似系数和细节系数。

例:计算一维离散小波变换

考虑四点离散函数: f ( 0 ) = 1 f(0)=1 f(0)=1 f ( 1 ) = 4 f(1)=4 f(1)=4 f ( 2 ) = − 3 f(2)= - 3 f(2)=3 f ( 3 ) = 0 f(3)=0 f(3)=0。我们将使用Haar尺度和小波函数,并假设 f ( x ) f(x) f(x)的四个样本分布在基函数的支撑集上。

j 0 = 0 j_{0}=0 j0=0,我们可以计算DWT系数为 :
W φ ( 0 , 0 ) = 1 2 ∑ x = 0 3 f ( x ) φ 0 , 0 ( x ) = 1 2 [ 1 + 4 + ( − 3 ) + 0 ] = 1 W ψ ( 0 , 0 ) = 1 2 [ 1 + 4 + ( − 3 ) ⋅ ( − 1 ) + 0 ⋅ ( − 1 ) ] = 4 W ψ ( 1 , 0 ) = 1 2 [ 1 ⋅ 2 + 4 ⋅ ( − 2 ) + ( − 3 ) ⋅ 0 + 0 ⋅ 0 ] = − 1.5 2 W ψ ( 1 , 1 ) = 1 2 [ 1 ⋅ 0 + 4 ⋅ 0 + ( − 3 ) ⋅ 2 + 0 ⋅ ( − 2 ) ] = − 1.5 2 \begin{align} W_{\varphi}(0,0)&=\frac{1}{2}\sum_{x = 0}^{3}f(x)\varphi_{0,0}(x)=\frac{1}{2}[1 + 4 + (- 3)+0]=1\\ W_{\psi}(0,0)&=\frac{1}{2}[1 + 4 + (- 3)\cdot(- 1)+0\cdot(- 1)]=4\\ W_{\psi}(1,0)&=\frac{1}{2}[1\cdot\sqrt{2}+4\cdot(-\sqrt{2})+(- 3)\cdot0+0\cdot0]=- 1.5\sqrt{2}\\ W_{\psi}(1,1)&=\frac{1}{2}[1\cdot0+4\cdot0+(- 3)\cdot\sqrt{2}+0\cdot(-\sqrt{2})]=- 1.5\sqrt{2}\end{align} Wφ(0,0)Wψ(0,0)Wψ(1,0)Wψ(1,1)=21x=03f(x)φ0,0(x)=21[1+4+(3)+0]=1=21[1+4+(3)(1)+0(1)]=4=21[12 +4(2 )+(3)0+00]=1.52 =21[10+40+(3)2 +0(2 )]=1.52
因此,我们的简单四样本函数相对于Haar缩放和小波函数的离散小波变换是 { 1 , 4 , − 1.5 2 , − 1.5 2 } \{1, 4, - 1.5\sqrt{2}, - 1.5\sqrt{2}\} {1,4,1.52 ,1.52 }。由于变换系数是两个变量——尺度 j j j和平移 k k k的函数,我们将它们组合成一个有序集合。这个集合中的元素与该函数按顺序排列的Haar变换的元素相同:
t H = A H f = 1 2 [ 1 1 1 1 1 1 − 1 − 1 2 − 2 0 0 0 0 2 − 2 ] [ 1 4 − 3 0 ] = [ 1 4 − 1.5 2 − 1.5 2 ] t^{H}=\mathbf{A}_{H} f=\frac{1}{2}\left[\begin{array}{cccc} 1 & 1 & 1 & 1 \\ 1 &1& - 1 & - 1 \\ \sqrt{2} & -\sqrt{2} & 0 & 0 \\ 0 & 0 & \sqrt{2} & -\sqrt{2} \end{array}\right]\left[\begin{array}{c} 1 \\ 4 \\ - 3 \\ 0 \end{array}\right]=\left[\begin{array}{c} 1 \\4\\ - 1.5\sqrt{2} \\ - 1.5\sqrt{2} \end{array}\right] tH=AHf=21 112 0112 01102 1102 1430 = 141.52 1.52
回顾上一节,Haar变换是单个变换域变量(记为 u u u)的函数。 方程:
f ( x ) = 1 M [ W φ ( 0 , 0 ) φ ( x ) + ∑ j = 0 J − 1 ∑ k = 0 2 j − 1 W ψ ( j , k ) ψ j , k ( x ) ] f(x)=\frac 1 {\sqrt{M}}\left[W_{\varphi}(0,0)\varphi(x)+\sum^{J-1}_{j=0}\sum^{2^j-1}_{k=0}W_{\psi}(j,k)\psi_{j,k}(x)\right] f(x)=M 1 Wφ(0,0)φ(x)+j=0J1k=02j1Wψ(j,k)ψj,k(x)
使得能够从其小波变换系数重建原始函数。展开求和式可以构造原始函数:
f ( x ) = 1 2 [ W φ ( 0 , 0 ) φ 0 , 0 ( x ) + W ψ ( 0 , 0 ) ψ 0 , 0 ( x ) + W ψ ( 1 , 0 ) ψ 1 , 0 ( x ) + W ψ ( 1 , 1 ) ψ 1 , 1 ( x ) ] f(x)=\frac{1}{2}[W_{\varphi}(0,0)\varphi_{0,0}(x)+W_{\psi}(0,0)\psi_{0,0}(x)+W_{\psi}(1,0)\psi_{1,0}(x)+W_{\psi}(1,1)\psi_{1,1}(x)] f(x)=21[Wφ(0,0)φ0,0(x)+Wψ(0,0)ψ0,0(x)+Wψ(1,0)ψ1,0(x)+Wψ(1,1)ψ1,1(x)]
对于 x = 0 x = 0 x=0:
f ( 0 ) = 1 2 [ 1 ⋅ 1 + 4 ⋅ 1 + ( − 1.5 2 ) ⋅ 2 + ( − 1.5 2 ) ⋅ 0 ] = 1 f(0)=\frac{1}{2}[1\cdot1 + 4\cdot1+(- 1.5\sqrt{2})\cdot\sqrt{2}+(- 1.5\sqrt{2})\cdot0]=1 f(0)=21[11+41+(1.52 )2 +(1.52 )0]=1
基本的假设是开始尺度 j 0 = 0 j_0=0 j0=0, 此例的4点DWT是 f ( x ) f(x) f(x)的二尺度分解,即 j = { 0 , 1 } j=\{0,1\} j={0,1}.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/945866.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

本地小主机安装HomeAssistant开源智能家居平台打造个人AI管家

文章目录 前言1. 添加镜像源2. 部署HomeAssistant3. HA系统初始化配置4. HA系统添加智能设备4.1 添加已发现的设备4.2 添加HACS插件安装设备 5. 安装cpolar内网穿透5.1 配置HA公网地址 6. 配置固定公网地址 前言 大家好&#xff01;今天我要向大家展示如何将一台迷你的香橙派Z…

Rocky Linux下安装meld

背景介绍&#xff1a; meld是一款Linux系统下的用于 文件夹和文件的比对软件&#xff0c;非常常用&#xff1b; 故障现象&#xff1a; 输入安装命令后&#xff0c;sudo yum install meld&#xff0c;报错。 12-31 22:12:17 ~]$ sudo yum install meld Last metadata expirat…

数据结构与算法之动态规划: LeetCode 337. 打家劫舍 III (Ts版)

打家劫舍 III https://leetcode.cn/problems/house-robber-iii/description/ 描述 小偷又发现了一个新的可行窃的地区。这个地区只有一个入口&#xff0c;我们称之为 root除了 root 之外&#xff0c;每栋房子有且只有一个“父“房子与之相连一番侦察之后&#xff0c;聪明的小…

chatwoot 开源客服系统搭建

1. 准备开源客服系统&#xff08;我是用的Chatwoot &#xff09; 可以选择以下开源客服系统作为基础&#xff1a; Chatwoot: 功能强大&#xff0c;支持多渠道客户对接&#xff0c;&#xff08;支持app&#xff0c;web&#xff09;。Zammad: 现代的开源工单系统。FreeScout: 免…

sentinel-请求限流、线程隔离、本地回调、熔断

请求限流&#xff1a;控制QPS来达到限流的目的 线程隔离&#xff1a;控制线程数量来达到限流的目录 本地回调&#xff1a;当线程被限流、隔离、熔断之后、就不会发起远程调用、而是使用本地已经准备好的回调去提醒用户 服务熔断&#xff1a;熔断也叫断路器&#xff0c;当失败、…

鸿蒙开发-ArkTS中使用Path组件

在ArkTS中使用Path组件&#xff0c;可以按照以下步骤进行&#xff1a; 一、了解Path组件 Path组件用于根据绘制路径生成封闭的自定义形状。该组件从API Version 7开始支持&#xff0c;并随着后续版本的更新可能增加新的功能。Path组件支持多种属性和方法&#xff0c;用于定义…

高效管理 Nginx 的利器:nginxWebUI 指南和 Docker 部署安装过程

前言 Nginx WebUI 是一个为 Nginx 提供图形化管理界面的工具。通过 WebUI&#xff0c;用户可以轻松管理 Nginx 配置&#xff0c;而无需直接编辑配置文件&#xff0c;尤其适合新手用户和频繁修改配置的场景。 官网文档&#xff1a;nginxWebUI - 文档 本文将分享为什么选择 ngin…

Linux网络 | 理解Web路径 以及 实现一个简单的helloworld网页

前言&#xff1a;本节内容承接上节课的http相关的概念&#xff0c; 主要是实现一个简单的接收http协议请求的服务。这个程序对于我们理解后面的http协议的格式&#xff0c;报头以及网络上的资源的理解&#xff0c; 以及本节web路径等等都有着重要作用。 可以说我们就用代码来理…

2.5万字 - 用TensorFlow和PyTorch分别实现五种经典模型

在深度学习领域&#xff0c;TensorFlow和PyTorch是两大广泛使用的框架&#xff0c;各有其独特的特性和优势。随着人工智能技术的快速发展&#xff0c;越来越多的开发者需要熟练掌握这两种工具&#xff0c;以便在实际项目中选择适合的框架进行高效开发。 目录 入门友好介绍 Te…

【C++】2029:【例4.15】水仙花数

博客主页&#xff1a; [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: C 文章目录 &#x1f4af;前言&#x1f4af;题目描述&#x1f4af;我的做法思路分析优势不足之处 &#x1f4af;老师的做法思路分析优势不足 &#x1f4af;对比和优化实现方式对比优化思路和操作1. 直接分解数字的各位…

结合长短期记忆网络(LSTM)和无迹卡尔曼滤波器(UKF)的技术在机器人导航和状态估计中的应用前景

结合长短期记忆网络(LSTM)和无迹卡尔曼滤波器(UKF)的技术在机器人导航和状态估计中具有广泛的应用前景。如有滤波、导航方面的代码定制需求,可通过文末卡片联系作者获得帮助 文章目录 结合LSTM和UKF的背景结合LSTM和UKF的优势应用实例研究现状MATLAB代码示例结论结合LSTM和…

Android14 CTS-R6和GTS-12-R2不能同时测试的解决方法

背景 Android14 CTS r6和GTS 12-r1之后&#xff0c;tf-console默认会带起OLC Server&#xff0c;看起来olc server可能是想适配ATS(android-test-station)&#xff0c;一种网页版可视化、可配置的跑XTS的方式。这种网页版ATS对测试人员是比较友好的&#xff0c;网页上简单配置下…

告别Kibana:Elasticsearch 桌面客户端的新变革

告别Kibana&#xff1a;Elasticsearch 桌面客户端的新变革 在大数据处理与分析领域&#xff0c;Elasticsearch 及其相关技术的应用日益广泛。长期以来&#xff0c;Kibana 在数据可视化与查询管理方面占据重要地位&#xff0c;但随着技术的不断发展&#xff0c;用户对于更高效、…

HTML5实现喜庆的新年快乐网页源码

HTML5实现喜庆的新年快乐网页源码 前言一、设计来源1.1 主界面1.2 关于新年界面1.3 新年庆祝活动界面1.4 新年活动组织界面1.5 新年祝福订阅界面1.6 联系我们界面 二、效果和源码2.1 动态效果2.2 源代码 源码下载结束语 HTML5实现喜庆的新年快乐网页源码&#xff0c;春节新年网…

【广州计算机学会、广州互联网协会联合主办 | ACM独立出版 | 高录用】第四届大数据、信息与计算机网络国际学术会议(BDICN 2025)

第四届大数据、信息与计算机网络国际学术会议&#xff08;BDICN 2025&#xff09;定于2025年01月10-12日在中国广州举行。会议旨在为从事“大数据”、“计算机网络”与“信息”研究的专家学者、工程技术人员、技术研发人员提供一个共享科研成果和前沿技术&#xff0c;了解学术发…

C语言函数栈帧的创建和销毁

文章目录 一、寄存器二、函数栈帧的创建和销毁1.什么是函数栈帧&#xff1f;2.案例代码-讲解3.总结函数栈帧 一、寄存器 寄存器(Register)是中央处理机、主存储器和其他数字设备中某些特定用途的存储单元。寄存器是集成电路中非常重要的一种存储单元&#xff1b;其可用来暂存指…

我的博客年度之旅:感恩、成长与展望

目录 感恩有你 技能满点 新年新征程 嘿&#xff0c;各位技术大佬、数码潮咖还有屏幕前超爱学习的小伙伴们&#xff01;当新年的钟声即将敲响&#xff0c;我们站在时光的交汇点上&#xff0c;回首过往&#xff0c;满心感慨&#xff1b;展望未来&#xff0c;豪情满怀。过去的这…

【数据库初阶】MySQL数据类型

&#x1f389;博主首页&#xff1a; 有趣的中国人 &#x1f389;专栏首页&#xff1a; 数据库初阶 &#x1f389;其它专栏&#xff1a; C初阶 | C进阶 | 初阶数据结构 亲爱的小伙伴们&#xff0c;大家好&#xff01;在这篇文章中&#xff0c;我们将深入浅出地为大家讲解 MySQL…

webrtc 源码阅读 make_ref_counted模板函数用法

目录 1. 模板参数解析 1.1 typename T 1.2 typename... Args 1.3 typename std::enable_if::value, T>::type* nullptr 2. scoped_refptr 3. new RefCountedObject(std::forward(args)...); 4. 综合说明 5.在webrtc中的用法 5.1 peerConnectionFactory对象的构建过…

python参数传递不可变对象含可变子对象

当传递不可变对象时。不可变对象里面包含的子对象是可变的。则方法内修改了这个可变对象&#xff0c;源对象也发生了变化。 a (10, 20, [5, 6]) print("a", id(a))def test01(m):print("m", id(m))m[2][0] 888print("修改m后m的值为{}".forma…