lora训练模型 打造个人IP

准备工作

  • 下载秋叶炼丹器
  • 整理自己的照片
  • 下载底膜 https://rentry.org/lycoris-experiments
  • 在这里插入图片描述

实操步骤

  1. 解压整合包 lora-scripts,先点击“更新”

在这里插入图片描述

  1. 训练图片收集

比如要训练一个自己头像的模型,就可以拍一些自己的照片(20-50张,最少15张),要求画质清晰,脸部轮廓清楚,背景较为简单的照片。

建议整理成512*512大小 , 推荐工具
在这里插入图片描述

  1. 使用WD1,4 标签器的预处理功能进行图片的预处理
    将准备好的图片,放入目录 train/XXX[自定义]/ [数值, 图片数量]_XXX[自定义]
    在这里插入图片描述

这里可以根据自己的情况设置不同的宽高,以及相关的设置项,设置完成之后,点击“预处理”就可以进行图像的预处理了,预处理进度会在右侧显示。处理完成之后的文件夹内文件统一转成了512*512的png格式,并且多了一个txt文件,这个文件里面就是图片内容的提示词。

  1. 点击启动, 对照片打标签
    在这里插入图片描述

执行完毕后, 照片文件夹会自动生成txt文件
在这里插入图片描述
5. 使用lora训练-新手模式
在这里插入图片描述
在这里插入图片描述

lora-scripts环境搭建

若新手从零开始, 请参考本专栏基础知识, 此处简略说明下安装环境

  1. 先将lora-scripts项目(
GitHub - Akegarasu/lora-scripts: LoRA training scripts use kohya-ss's trainer, for diffusion model.
https://github.com/Akegarasu/lora-scripts

)克隆到本地,可以放在stable-diffusion下面,也可以放在其他目录下面。

  1. 克隆完之后,进入该目录删除sd-scripts文件夹,然后克隆sd-scripts项目(
GitHub - kohya-ss/sd-scripts
https://github.com/kohya-ss/sd-scripts

)到该目录下。

  1. 安装环境,有两种方式。一种是在lora-scripts下直接执行./install.ps1命令,自动安装相关环境。另外一种是进入到lora-scripts/sd-scripts中,使用以下命令进行安装(可以参考该项目下的说明文档)。
##  创建并激活虚拟环境
python -m venv venv
.\venv\Scripts\activate
 
## 安装cuda
pip install torch==1.12.1+cu116 torchvision==0.13.1+cu116 --extra-index-url https://download.pytorch.org/whl/cu116
 
## 安装相关包,可以加上 -i 国内源 快一点儿!
pip install --upgrade -r requirements.txt
 
## 安装xformers,这里可以先用下载工具把文件下载下来,用本地路径安装,不然网络不稳定很容易中断
pip install -U -I --no-deps https://github.com/C43H66N12O12S2/stable-diffusion-webui/releases/download/f/xformers-0.0.14.dev0-cp310-cp310-win_amd64.whl
 
## 复制相关文件到虚拟环境
cp .\bitsandbytes_windows\*.dll .\venv\Lib\site-packages\bitsandbytes\
cp .\bitsandbytes_windows\cextension.py .\venv\Lib\site-packages\bitsandbytes\cextension.py
cp .\bitsandbytes_windows\main.py .\venv\Lib\site-packages\bitsandbytes\cuda_setup\main.py
 
## 加速器配置
accelerate config

这里要注意的是,cuda和xformers的版本这里是对应好的,如果版本不对会报错。另外,后面的相关操作都是在venv的虚拟环境下操作的,所以如果重新进入的话,需要重新激活虚拟环境。

accelerate config这个命令进入之后,对于多项选择的可以用上下键,或者使用(0,1,2…)去选择相关的选项,yes or no的直接输入然后回车,大部分配置项选择默认就可以了,我这里没有使用DeepSpeed,所以这一项,我选择的No,根据自己的实际情况去选就行了,不知道啥意思的可以挨个查下。

  1. 准备训练

训练有两种方式,方式一:直接执行训练命令(执行 ./train.ps1),方式二:使用webui的方式(执行 ./run_gui.ps1 打开web页面)。

(1)将预处理过的图片目录(qige)拷贝到lora-scripts/train/qg_imgs目录下(train目录不存在可以新建一个,这里要注意,图片和文本存放的最终目录是lora-scripts/train/qg_imgs/qige)

(2)修改配置。

方式一,直接修改train.ps1文件,修改以下配置

## Train data path | 设置训练用模型、图片
$pretrained_model = "./sd-models/chilloutmix_NiPrunedFp32Fix.safetensors" # base model path | 底模路径
$train_data_dir = "./train/qg_imgs" # train dataset path | 训练数据集路径
 
 
 
## Train related params | 训练相关参数
$resolution = "512,512" # image resolution w,h. 图片分辨率,宽,高。支持非正方形,但必须是 64 倍数。
$batch_size = 2 # batch size
$max_train_epoches = 20 # max train epoches | 最大训练 epoch
$save_every_n_epochs = 2 # save every n epochs | 每 N 个 epoch 保存一次
 
 
 
$output_name = "qg" # output model name | 模型保存名称

chilloutmix_NiPrunedFp32Fix.safetensors 的下载地址为:

naonovn/chilloutmix_NiPrunedFp32Fix at main
We’re on a journey to advance and democratize artificial intelligence through open source and open science.
https://huggingface.co/naonovn/chilloutmix_NiPrunedFp32Fix/tree/main

也可以使用其他的模型,上面的模型地址也可以改成stable-diffusion中已有的模型路径,可以节约点儿磁盘空间,毕竟单个模型都是好几个G。另外这个目录设置要注意,不是到最后那一层的目录,是到最后一层的上一层目录。

方式二,直接在webui上设置,比较直观

在这里插入图片描述

  1. 开始训练
    本文最开始 的几个步骤

如果使用的是方式二,可以直接点击右侧的“直接开始训练”按钮就可以开始训练,与方式一一样,相关的输出信息可以在命令行终端上看到。一般不会一下就成功,可以根据相关的报错信息进行修改。我用的是3060的显卡,之前将batch_size和max_train_epoches设置得较大,中途会出现显存不够用的情况,然后逐步调整,才最终跑完。训练的过程见下图。

在这里插入图片描述

最后会在output目录中,输出训练好的模型文件。

  1. 模型使用

将训练好的模型.safetensors文件拷贝到stable-diffusion文件夹下的models/lora/文件夹下,在提示词中加入lora:训练的模型:权重就可以生成自己的图像了,效果还行。如果用更多图片,有更强悍的机器,训练出来的效果应该会更好…

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/908121.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

qt QBrush详解

1、概述 QBrush是Qt框架中的一个基本图形对象类,它主要用于定义图形的填充模式。QBrush可以用于填充如矩形、椭圆形、多边形等形状,也可以用于绘制背景等。通过QBrush,可以设置填充的颜色、样式(如实心、渐变、纹理等&#xff09…

《C#语法一篇通》,20万字,48小时阅读,持续完善中。。。

本文摘录了C#语法的主要内容,接近20万字。 所有鸡汤的味道都等于马尿! 如果你相信任何所谓的鸡汤文章,智商堪忧。 计算机语言没有”好不好“之说,骗子才会告诉你哪个语言好,学好任何一本基础语言(C&#…

radio astronomy 2

地球上的电离层会被太阳风影响。

数字人直播带货前景如何?头部源码厂商的系统能实现哪些功能?

随着数字人直播技术的成熟,以数字人直播带货为代表的应用场景逐渐呈现出常态化的趋势,使得越来越多创业者对该赛道产生兴趣的同时,也让数字人直播带货前景及操作方式成为了他们所重点关注的对象。 从目前的情况来看,就数字人直播带…

华为鲲鹏一体机 安装笔记

安装驱动 在这个链接 社区版-固件与驱动-昇腾社区 1 下载NPU固件 需要注册登录,否则报错: ERR_NO:0x0091;ERR_DES:HwHiAiUser not exists! Please add HwHi AiUser 准备软件包-软件安装-CANN…

【C++】类和对象(十一):友元+内部类+匿名函数

大家好,我是苏貝,本篇博客带大家了解C的友元内部类匿名函数,如果你觉得我写的还不错的话,可以给我一个赞👍吗,感谢❤️ 目录 1. 友元1.1 友元函数1.2 友元类 2. 内部类3. 匿名对象 1. 友元 友元提供了一种…

【深度学习】VITS语音合成原理解析

1、前言 呃。。。好多天没更新了,最近 黑神话悟空 相当火啊,看上瘾了。本篇内容,我们来讲一下VITS。 视频:语言合成 & 变声器 ——VITS原理解析①_哔哩哔哩_bilibili 2、VITS 训练图 预测图: 2.1、条件VAE的优…

git 入门作业

任务1: 破冰活动:自我介绍任务2: 实践项目:构建个人项目 git使用流程: 1.将本项目直接fork到自己的账号下,这样就可以直接在自己的账号下进行修改和提交。 这里插一条我遇到的问题,在fork的时候没有将那个only camp4的…

再探“构造函数”(2)友元and内部类

文章目录 一. 友元‘全局函数’作友元‘成员函数’作友元‘类‘作友元 内部类 一. 友元 何时会用到友元呢? 当想让(类外面的某个函数/其它的类)访问 某个类里面的(私有或保护的)内容时,可以选择使用友元。 友元提供了一种突破&a…

从零到一构建C语言解释器-CPC源码

文章目录 参考框架设计vm指令集分配空间词法分析语法分析递归下降表达式优先级爬山 参考 https://lotabout.me/2015/write-a-C-interpreter-1/ https://github.com/archeryue/cpc https://www.bilibili.com/video/BV1Kf4y1V783/?vd_sourcea1be939c65919194c77b8a6a36c14a6e …

关于我、重生到500年前凭借C语言改变世界科技vlog.14——常见C语言算法

文章目录 1.冒泡排序2.二分查找3.转移表希望读者们多多三连支持小编会继续更新你们的鼓励就是我前进的动力! 根据当前所学C语言知识,对前面知识进行及时的总结巩固,出了这么一篇 vlog 介绍当前所学知识能遇到的常见算法,这些算法是…

我也谈AI

“随着人工智能技术的不断发展,我们已经看到了它在各行业带来的巨大变革。在医疗行业中,人工智能技术正在被应用于病例诊断、药物研发等方面,为医学研究和临床治疗提供了新的思路和方法;在企业中,人工智能技术可以通过…

Flutter 13 网络层框架架构设计,支持dio等框架。

在移动APP开发过程中,进行数据交互时,大多数情况下必须通过网络请求来实现。客户端与服务端常用的数据交互是通过HTTP请求完成。面对繁琐业务网络层,我们该如何通过网络层架构设计来有效解决这些问题,这便是网络层框架架构设计的初…

Spring Boot2.x教程:(十)从Field injection is not recommended谈谈依赖注入

从Field injection is not recommended谈谈依赖注入 1、问题引入2、依赖注入的三种方式2.1、字段注入(Field Injection)2.2、构造器注入(Constructor Injection)2.3、setter注入(Setter Injection) 3、为什…

Nginx的基础架构解析(下)

1. Nginx模块 1.1 Nginx中的模块化设计 Nginx 的内部结构是由核心部分和一系列的功能模块所组成。这样划分是为了使得每个模块的功能相对简单,便于开发,同时也便于对系统进行功能扩展。Nginx 将各功能模块组织成一条链,当有请求到达的时候&…

【网络】网络层协议IP

目录 IP协议报头 报头分离和向上交付 四位版本 8位服务类型 16位总长度 八位生存时间 16位标识一行 网段划分 DHCP 私有IP范围 公网划分之CIDR 特殊的IP地址 缓解IP地址不够用的方法 NAT技术 路由 IP是用来主机定位和路由选择的,它提供了一种能力&am…

HTML 基础标签——多媒体标签<img>、<object> 与 <embed>

文章目录 1. `<img>` 标签主要属性示例注意事项2. `<object>` 标签概述主要属性示例注意事项3. `<embed>` 标签概述主要属性示例注意事项小结在现代网页设计中,多媒体内容的使用变得越来越重要,因为它能够有效增强用户体验、吸引注意力并传达信息。HTML 提…

【Canal 中间件】Canal 实现 MySQL 增量数据的异步缓存更新

文章目录 一、安装 MySQL1.1 启动 mysql 服务器1.2 开启 Binlog 写入功能1.2.1创建 binlog 配置文件1.2.2 修改配置文件权限1.2.3 挂载配置文件1.2.4 检测 binlog 配置是否成功 1.3 创建账户并授权 二、安装 RocketMQ2.1 创建容器共享网络2.2 启动 NameServer2.3 启动 Broker2.…

深度学习(九):推荐系统的新引擎(9/10)

一、深度学习与推荐系统的融合 深度学习在推荐系统中的融合并非偶然。随着互联网的飞速发展&#xff0c;数据量呈爆炸式增长&#xff0c;传统推荐系统面临着诸多挑战。例如&#xff0c;在处理大规模、高维度的数据时&#xff0c;传统方法往往显得力不从心。而深度学习以其强大的…

masm汇编字符串输出演示

assume cs:code, ds:datadata segmentmassage db zhouzunjie, 0dh, 0ah, $ data endscode segmentstart:mov ax, datamov ds, axmov ah, 09hlea dx, massageint 21hmov ax, 4c00hint 21hcode ends end start 效果演示&#xff1a;