二、kafka生产与消费全流程

一、使用java代码生产、消费消息

1、生产者

package com.allwe.client.simple;

import lombok.extern.slf4j.Slf4j;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.serialization.StringSerializer;

import java.util.Properties;

/**
 * kafka生产者配置
 *
 * @Author: AllWe
 * @Date: 2024/09/24/17:57
 */
@Slf4j
public class HelloKafkaProducer {
    public static void main(String[] args) {
        // 设置属性
        Properties properties = new Properties();
        // 指定连接的kafka服务器地址,多台就用“,”隔开,如果某一台宕机生产者依然可以连接
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "127.0.0.1:9092");
        // 设置key和value的序列化器,使java对象转换成二进制数组
        properties.put("key.serializer", StringSerializer.class);
        properties.put("value.serializer", StringSerializer.class);

        // new一个生产者producer
        KafkaProducer<String, String> producer = new KafkaProducer<>(properties);
        try {
            ProducerRecord<String, String> producerRecord;
            try {
                // 构建消息
                producerRecord = new ProducerRecord<>("topic_1", "student", "allwe");
                // 发送消息
                producer.send(producerRecord);
                System.out.println("消息发送成功");
            } catch (Exception e) {
                e.printStackTrace();
            }
        } finally {
            // 释放连接
            producer.close();
        }
    }
}

2、消费者

package com.allwe.client.simple;

import lombok.extern.slf4j.Slf4j;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.common.serialization.StringDeserializer;

import java.time.Duration;
import java.util.Collections;
import java.util.Properties;

/**
 * kafka生产者配置
 *
 * @Author: AllWe
 * @Date: 2024/09/24/17:57
 */
@Slf4j
public class HelloKafkaConsumer {
    public static void main(String[] args) {
        // 设置属性
        Properties properties = new Properties();
        // 指定连接的kafka服务器地址,多台就用“,”隔开,如果某一台宕机生产者依然可以连接
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "127.0.0.1:9092");
        // 设置key和value的序列化器,使java对象转换成二进制数组
        properties.put("key.deserializer", StringDeserializer.class);
        properties.put("value.deserializer", StringDeserializer.class);
        properties.put(ConsumerConfig.GROUP_ID_CONFIG, "test");

        // new一个消费者consumer
        KafkaConsumer<String, String> consumer = new KafkaConsumer<>(properties);
        try {
            // 订阅哪些主题,可以多个,推荐订阅一个主题
            consumer.subscribe(Collections.singleton("topic_1"));
            // 死循环里面实现监听
            while (true) {
                // 每间隔1s,取一次消息,可能取到多条消息
                // 设置一秒的超时时间
                ConsumerRecords<String, String> records = consumer.poll(Duration.ofSeconds(1));
                for (ConsumerRecord<String, String> record : records) {
                    System.out.println("key:" + record.key() + ",value:" + record.value());
                }
            }
        } finally {
            // 释放连接
            consumer.close();
        }
    }
}

3、踩坑

如果连接的不是本机的kafka,需要在目标机器的kafka配置文件中配置真实的ip地址,如果使用默认的配置或者配置为localhost:9092,kafka.clients会将目标机器的ip解析为127.0.0.1,导致连接不上kafka。

二、生产者

1、序列化器

在上面的demo中,由于消息的key和value都是String类型的,就可以使用kafka.client提供的String序列化器,如果想要发送其他自定义类型的对象,可以手动编写一个序列化器和反序列化器,实现Serializer接口,将对象和byte数组互相转换即可。

需要注意的是,生产者使用的自定义序列化器必须和消费者使用的反序列化器对应,否则无法正确解析消息。

那么什么情况下需要使用自定义序列化器呢?

        -- 需要兼容一些其他协议。

2、分区器

发送的消息被分配到哪个分区中?分区是如何选择的?假设上面的demo中,主题topic_1有4个分区,分别发送4次消息,处理分区的逻辑是怎样的?

这里需要先配置kafka在创建新的主题时,默认的分区数量,我这里配置为了4。

1)指定分区器

可以选择在创建生产者时,给生产者配置相关的分区器,指定具体分区算法。kafka.client提供了一些分区器,或者自己实现一个分区器。

// 设置分区规则
Properties properties = new Properties();
// 1、默认分区器
properties.put(ProducerConfig.PARTITIONER_CLASS_CONFIG, DefaultPartitioner.class);
// 2、统一粘性分区器
properties.put(ProducerConfig.PARTITIONER_CLASS_CONFIG, UniformStickyPartitioner.class);
// 3、自定义分区器
properties.put(ProducerConfig.PARTITIONER_CLASS_CONFIG, MyPartitioner.class);

自定义分区器:

package com.allwe.client.partitioner;

import org.apache.kafka.clients.producer.Partitioner;
import org.apache.kafka.common.Cluster;
import org.apache.kafka.common.PartitionInfo;
import org.apache.kafka.common.utils.Utils;

import java.util.List;
import java.util.Map;

/**
 * 自定义分区器 - 以value值分区
 */
public class MyPartitioner implements Partitioner {
    @Override
    public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {
        List<PartitionInfo> partitionInfoList = cluster.partitionsForTopic(topic);
        // 以value值的byte数组处理后再和分区数取模,决定放在哪个分区上
        return Utils.toPositive(Utils.murmur2(valueBytes)) % partitionInfoList.size();
    }

    @Override
    public void close() {

    }

    @Override
    public void configure(Map<String, ?> map) {

    }
}

2)指定分区

也可以选择在构建消息时指定分区,此时的分区优先级最高,不会被其他分区器影响。

# 创建消息时指定分区为 0
ProducerRecord<String, String> producerRecord = new ProducerRecord<>("topic_1", 0, "student", "allwe");

3、生产者发送消息的回调

package com.allwe.client.partitioner;

import lombok.extern.slf4j.Slf4j;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata;
import org.apache.kafka.common.serialization.StringSerializer;

import java.util.Properties;
import java.util.concurrent.Future;

/**
 * kafka生产者配置 - 自定义分区器 & 发送消息回调
 *
 * @Author: AllWe
 * @Date: 2024/09/24/17:57
 */
@Slf4j
public class PartitionerProducer {
    public static void main(String[] args) {
        // 设置属性
        Properties properties = new Properties();
        // 指定连接的kafka服务器地址,多台就用“,”隔开,如果某一台宕机生产者依然可以连接
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "127.0.0.1:9092");
        // 设置key和value的序列化器,使java对象转换成二进制数组
        properties.put("key.serializer", StringSerializer.class);
        properties.put("value.serializer", StringSerializer.class);
        // 设置自定义分区器
        properties.put(ProducerConfig.PARTITIONER_CLASS_CONFIG, MyPartitioner.class);

        // new一个生产者producer
        KafkaProducer<String, String> producer = new KafkaProducer<>(properties);
        try {
            ProducerRecord<String, String> producerRecord;
            try {
                // 构建指定分区的消息,此时指定的分区不会变
                // producerRecord = new ProducerRecord<>("topic_1", 0, "student", "allwe");
                for (int i = 0; i < 10; i++) {
                    // 构建消息
                    producerRecord = new ProducerRecord<>("topic_2", "student", "allwe" + i);
                    // 发送消息
                    Future<RecordMetadata> future = producer.send(producerRecord);
                    // 解析回调元数据
                    RecordMetadata recordMetadata = future.get();
                    System.out.println(i + ",offset:" + recordMetadata.offset() + ",partition:" + recordMetadata.partition());
                }
            } catch (Exception e) {
                e.printStackTrace();
            }
        } finally {
            // 释放连接
            producer.close();
        }
    }
}

打印结果:

4、异步解析生产者发送消息的回调

package com.allwe.client.callBack;

import com.allwe.client.partitioner.MyPartitioner;
import lombok.extern.slf4j.Slf4j;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.serialization.StringSerializer;

import java.util.Properties;

/**
 * kafka生产者配置 - 异步解析发送消息回调
 *
 * @Author: AllWe
 * @Date: 2024/09/24/17:57
 */
@Slf4j
public class AsynPartitionerProducer {
    public static void main(String[] args) {
        // 设置属性
        Properties properties = new Properties();
        // 指定连接的kafka服务器地址,多台就用“,”隔开,如果某一台宕机生产者依然可以连接
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "127.0.0.1:9092");
        // 设置key和value的序列化器,使java对象转换成二进制数组
        properties.put("key.serializer", StringSerializer.class);
        properties.put("value.serializer", StringSerializer.class);
        // 设置自定义分区器
        properties.put(ProducerConfig.PARTITIONER_CLASS_CONFIG, MyPartitioner.class);

        // new一个生产者producer
        KafkaProducer<String, String> producer = new KafkaProducer<>(properties);
        try {
            ProducerRecord<String, String> producerRecord;
            try {
                for (int i = 0; i < 10; i++) {
                    // 构建消息
                    producerRecord = new ProducerRecord<>("topic_3", "student", "allwe" + i);
                    // 发送消息, 设置异步回调解析器
                    producer.send(producerRecord, new CallBackImpl());
                }
                System.out.println("发送完成,topic_4");
            } catch (Exception e) {
                e.printStackTrace();
            }
        } finally {
            // 释放连接
            producer.close();
        }
    }
}
package com.allwe.client.callBack;

import cn.hutool.core.util.ObjectUtil;
import org.apache.kafka.clients.producer.Callback;
import org.apache.kafka.clients.producer.RecordMetadata;

/**
 * 异步发送消息回调解析器
 */
public class CallBackImpl implements Callback {
    @Override
    public void onCompletion(RecordMetadata recordMetadata, Exception e) {
        if (ObjectUtil.isNull(e)) {
            // 解析回调元数据
            System.out.println("offset:" + recordMetadata.offset() + ",partition:" + recordMetadata.partition());
        } else {
            e.printStackTrace();
        }
    }
}

5、生产者缓冲

1)为什么kafka在客户端发送消息的时候需要做一个缓冲?

① 减少IO的开销(单个 -> 批次),需要修改配置文件。

② 减少GC(核心)。

2)如何配置缓冲?

producer.properties配置文件中修改下面两个参数:

消息的大小:batch.size = 默认16384(16K) 

暂存的时间:linger.ms = 默认0ms

上面两个条件只要达到一个,就会发送消息,所以在默认配置下,生产一条消息就立即发送。

3)减少GC的原理

producer.properties配置文件的参数:

缓冲池大小:buffer.memory = 默认32M

kafka客户端使用了缓冲池,默认大小32M,当有一条新的消息进入缓冲池,达到了任何一个条件后就发送。发送后不用立即回收内存,而是初始化一下缓冲池即可,减少了GC的次数。

简单说就是利用池化技术减少了对象的创建 -> 减少内存分配次数 -> 减少了垃圾回收次数。

4)使用缓冲池的风险

当缓存的消息超出缓冲池的大小,kafka就会抛出OOM异常。

如果写入消息太快,但是上一次send方法没有执行完,就会导致上一次缓存的消息不能删除,这一次进来的消息又太多,最终写满了缓冲池,触发OOM异常。

解决办法就是适当调整buffer.memory参数和batch.size参数,增加缓冲池大小,缩小每一批次的大小。

三、Kafka Broker

消息从生产者发送出去后,就进入了broker中。在kafka broker中,每一个分区就是一个文件。

四、消费者

1、消费者群组

在消费的过程中,一般情况下使用群组消费,设置group_id_config。

核心:kafka群组消费的负载均衡建立在分区级别。

1)单个群组场景

一个分区只能由一个消费者消费。

在kafka执行过程中,支持动态添加或者减少消费者。

2)多个群组场景

群组之间的消费是互不干扰的,比如群组A的消费者和群组B的消费者可以同时消费同一个分区的消息。

2、Demo记录

写一个生产者,我为了测试顺畅写了一个无限循环的。只启动一次,输入参数即可实现批量发送消息。

package com.allwe.client.singleGroup;

import com.allwe.client.partitioner.MyPartitioner;
import lombok.extern.slf4j.Slf4j;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.serialization.StringSerializer;

import java.util.Properties;
import java.util.Scanner;

/**
 * kafka生产者配置 - 无限生产消息
 *
 * @Author: AllWe
 * @Date: 2024/09/24/17:57
 */
@Slf4j
public class Producer {
    public static void main(String[] args) {
        // 设置属性
        Properties properties = new Properties();
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "127.0.0.1:9092");
        properties.put("key.serializer", StringSerializer.class);
        properties.put("value.serializer", StringSerializer.class);
        properties.put(ProducerConfig.PARTITIONER_CLASS_CONFIG, MyPartitioner.class);

        // new一个生产者producer
        KafkaProducer<String, String> producer = new KafkaProducer<>(properties);
        Scanner scanner = new Scanner(System.in);;
        try {
            int count;
            while (true) {
                System.out.println("==================输入消息条数===================");
                String nextLine = scanner.nextLine();
                if ("exit".equals(nextLine)) {
                    break;
                }
                count = Integer.parseInt(nextLine);
                ProducerRecord<String, String> producerRecord;
                try {
                    for (int i = 0; i < count; i++) {
                        // 构建消息
                        producerRecord = new ProducerRecord<>("topic_5", "topic_5", "allwe" + i);
                        producer.send(producerRecord);
                    }
                } catch (Exception e) {
                    e.printStackTrace();
                }
                System.out.println("发送完成,topic_5");
            }
        } catch (Exception e) {
            throw new RuntimeException(e);
        } finally {
            // 释放连接
            producer.close();
            scanner.close();
        }
    }
}
生产者控制台展示​​

写一个消费者base类,由于测试消费者需要启动很多类,我这里为了方便写了一个baseConsumer类,调用时new这个类的对象即可调用消费方法。

package com.allwe.client.singleGroup;

import lombok.Data;
import lombok.extern.slf4j.Slf4j;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.common.serialization.StringDeserializer;

import java.time.Duration;
import java.util.Collections;
import java.util.Properties;

/**
 * kafka 消费者配置
 *
 * @Author: AllWe
 * @Date: 2024/09/24/17:57
 */
@Slf4j
@Data
public class SingleGroupBaseConsumer {

    private String groupIdConfig;

    private String topicName;

    private KafkaConsumer<String, String> consumer;

    public SingleGroupBaseConsumer(String groupIdConfig, String topicName) {
        this.groupIdConfig = groupIdConfig;
        this.topicName = topicName;
        createConsumer();
    }

    private void createConsumer() {
        // 设置属性
        Properties properties = new Properties();
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "127.0.0.1:9092");
        properties.put("key.deserializer", StringDeserializer.class);
        properties.put("value.deserializer", StringDeserializer.class);
        properties.put(ConsumerConfig.GROUP_ID_CONFIG, groupIdConfig);

        consumer = new KafkaConsumer<>(properties);
    }

    public void poll() {
        try {
            consumer.subscribe(Collections.singleton(topicName));
            while (true) {
                ConsumerRecords<String, String> records = consumer.poll(Duration.ofSeconds(1));
                int count = 0;
                for (ConsumerRecord<String, String> record : records) {
                    count = 1;
                    System.out.println("partition:" + record.partition() + ",key:" + record.key() + ",value:" + record.value());
                }
                if (count == 1) {
                    // 消费到消息了就打印分隔线
                    System.out.println("===============================");
                }
            }
        } finally {
            consumer.close();
        }
    }
}

 1)单个群组场景

群组id:allwe01

package com.allwe.client.singleGroup;

import lombok.extern.slf4j.Slf4j;

/**
 * kafka消费者启动器
 *
 * @Author: AllWe
 * @Date: 2024/09/24/17:57
 */
@Slf4j
public class SingleGroupConsumer_1 {
    public static void main(String[] args) {
        SingleGroupBaseConsumer singleGroupBaseConsumer = new SingleGroupBaseConsumer("allwe01", "topic_5");
        singleGroupBaseConsumer.poll();
    }
}
消费者控制台展示

我这里只放了一个消费者的消费记录,根据消费者控制台打印的数据,可以看到两条信息:

① 该消费者只能消费分区=1的消息。

② 消费者消费消息时,每次拿到的消息数量不确定。

2)多个群组场景

群组id:allwe02

package com.allwe.client.group;

import com.allwe.client.singleGroup.SingleGroupBaseConsumer;
import lombok.extern.slf4j.Slf4j;

/**
 * kafka消费者启动器
 *
 * @Author: AllWe
 * @Date: 2024/09/24/17:57
 */
@Slf4j
public class GroupConsumer_1 {
    public static void main(String[] args) {
        SingleGroupBaseConsumer singleGroupBaseConsumer = new SingleGroupBaseConsumer("allwe02", "topic_5");
        singleGroupBaseConsumer.poll();
    }
}
消费者控制台展示

可以看到,这里新加入了一个消费者群组,只有一个消费者,它就消费到了全部分区的消息。

3、ACK确认

消费者在成功消费消息后,会进行ACK确认。提交最后一次消费消息的偏移量,下一次消费就从上次提交的偏移量开始,如果一个新的消费者群组消费一个主题的消息,可以根据不同的配置来指定起始的偏移量。

// 从最早的消息开始消费
properties.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");

// 从已提交的偏移量开始消费 - 默认配置
properties.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "latest");

在kafka内部,有一个名字叫【__consumer_offsets】的主题,保存了消费者对各个主题的消费偏移量。消费者每一次发送的ACK确认,都会更新这个主题中的偏移量数据。

1)自动提交ACK的消费模式

默认的消费模式。

只要拿到了消息,就自动提交ACK确认。

但是有一个风险,就是虽然消费者成功取到了消息,但是在程序处理过程中出现了异常,同时提交了ACK确认,那么这条消息就永远不会被正确地处理。

所以有时候我们需要避免自动提交ACK确认,改成手动提交ACK确认。

2)手动提交ACK确认

取消自动提交

// 取消自动提交
properties.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, false);
① 同步提交
// 同步提交ACK确认 - 提交不成功就一直重试,成功后才会继续往下执行
consumer.commitSync();

立刻进行ACK确认。但是容易造成阻塞,只有等待ACK确认成功后,才会继续执行程序。如果ACK确认不成功,就会一直重试。

② 异步提交
// 异步提交ACK确认
consumer.commitAsync();

异步提交不会阻塞应用程序,提交失败不会重试提交。

③ 组合使用demo
    public void poll() {
        try {
            consumer.subscribe(Collections.singleton(topicName));
            while (true) {
                ConsumerRecords<String, String> records = consumer.poll(Duration.ofSeconds(1));
                int count = 0;
                for (ConsumerRecord<String, String> record : records) {
                    count = 1;
                    System.out.println("partition:" + record.partition() + ",offset:" + record.offset() +",key:" + record.key() + ",value:" + record.value());
                }
                if (count == 1) {
                    // 消费到消息了就打印分隔线
                    System.out.println("===============================");
                }
                // 异步提交ACK确认
                consumer.commitAsync();
            }
        } finally {
            try {
                // 同步提交ACK确认 - 提交不成功就一直重试,成功后才会继续往下执行
                consumer.commitSync();
            } finally {
                consumer.close();
            }
        }
    }

3)手动批量提交ACK确认

如果消费者在某一时刻取到的消息数量太多,那么给每一条消息单独提交ACK确认太浪费资源,可以选择批量提交ACK确认。核心思想就是在程序中暂存偏移量,达到设定的阈值后就触发批量提交。

kafka.Consumer提供的异步提交ACK方法支持批量提交。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/883979.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

单通道串口服务器

型号&#xff1a; SG-TCP232-110 功能简介 SG-TCP232-110 是一款用来进行串口数据和网口数据转换的设备。解决普通串口设备在 Internet 上的联网问题。 设备的串口部分提供一个 232 接口和一个 485 接口&#xff0c;两个接口内部连接&#xff0c;同时只能使用一个口工作。 设备…

CVE-2024-46103

前言 CVE-2024-46103 SEMCMS的sql漏洞。 漏洞简介 SEMCMS v4.8中&#xff0c;SEMCMS_Images.php的search参数&#xff0c;以及SEMCMS_Products.php的search参数&#xff0c;存在sql注入漏洞。 &#xff08;这个之前就有两个sql的cve&#xff0c;这次属于是捡漏了&#x1f6…

Linux环境下安装python

Linux 环境下安装python 以下是在Linux环境下安装Python - 3.9.4.tgz的详细步骤&#xff1a;1. 下载Python - 3.9.4.tgz&#xff08;如果未下载&#xff09;2.解压文件3.安装依赖项&#xff08;如果需要&#xff09;4.配置和编译5.安装6.创建一个别名&#xff08;alias&#xf…

Sql Developer日期显示格式设置

默认时间格式显示 设置时间格式&#xff1a;工具->首选项->数据库->NLS->日期格式: DD-MON-RR 修改为: YYYY-MM-DD HH24:MI:SS 设置完格式显示&#xff1a;

JavaEE: 深入探索TCP网络编程的奇妙世界(四)

文章目录 TCP核心机制TCP核心机制四: 滑动窗口为啥要使用滑动窗口?滑动窗口介绍滑动窗口出现丢包咋办? TCP核心机制五: 流量控制 TCP核心机制 上一篇文章 JavaEE: 深入探索TCP网络编程的奇妙世界(三) 书接上文~ TCP核心机制四: 滑动窗口 为啥要使用滑动窗口? 之前我们讨…

计算机网络--HTTP协议

1.TCP,UDP的对比图 TCP:面向连接的,可靠的,字节流服务; UDP:无连接的,不可靠的,数据报服务; 2.补充网络部分的其他知识点 1).复位报文段 在某些特殊条件下&#xff0c; TCP 连接的一端会向另一端发送携带 RST 标志的报文段&#xff0c;即复位报文段&#xff0c;已通知对方…

大数据-146 Apache Kudu 安装运行 Dockerfile 模拟集群 启动测试

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; 目前已经更新到了&#xff1a; Hadoop&#xff08;已更完&#xff09;HDFS&#xff08;已更完&#xff09;MapReduce&#xff08;已更完&am…

视觉分析在垃圾检测中的应用

随着城市化进程的加快&#xff0c;垃圾管理成为现代城市面临的重大挑战。有效的垃圾识别和分类不仅能提升环境保护的效率&#xff0c;还能减少资源浪费。基于视觉分析的垃圾识别算法应运而生&#xff0c;为解决这一问题提供了技术支持。 垃圾识别算法的技术实现主要依赖于深度学…

002、视频格式转换

下载地址 http://www.pcfreetime.com/formatfactory/CN/index.html

【C++进阶】AVL树的介绍及实现

【C进阶】AVL树的介绍及实现 &#x1f955;个人主页&#xff1a;开敲&#x1f349; &#x1f525;所属专栏&#xff1a;C&#x1f96d; &#x1f33c;文章目录&#x1f33c; 1. AVL的介绍 2. AVL树的实现 2.1 AVL树的结构 2.2 AVL树的插入 2.2.1 插入一个值的大概过程 2.2.2 …

2024年中国电子学会青少年软件编程(Python)等级考试(二级)核心考点速查卡

考前练习 2024年03月中国电子学会青少年软件编程&#xff08;Python&#xff09;等级考试试卷&#xff08;二级&#xff09;答案 解析 2024年06月中国电子学会青少年软件编程&#xff08;Python&#xff09;等级考试试卷&#xff08;二级&#xff09;答案 解析 知识点描述 …

C语言题目之单身狗2

文章目录 一、题目二、思路三、代码实现 提示&#xff1a;以下是本篇文章正文内容&#xff0c;下面案例可供参考 一、题目 二、思路 第一步 在c语言题目之打印单身狗我们已经讲解了在一组数据中出现一个单身狗的情况&#xff0c;而本道题是出现两个单身狗的情况。根据一个数…

LabVIEW编程能力如何能突飞猛进

要想让LabVIEW编程能力实现突飞猛进&#xff0c;需要采取系统化的学习方法&#xff0c;并结合实际项目进行不断的实践。以下是一些提高LabVIEW编程能力的关键策略&#xff1a; 1. 扎实掌握基础 LabVIEW的编程本质与其他编程语言不同&#xff0c;它是基于图形化的编程方式&…

宝塔面板部署雷池社区版教程

宝塔面板部署雷池社区版教程 简单介绍一下宝塔面板&#xff0c;安全高效的服务器运维面板&#xff0c;使用宝塔面板的人非常多 在网站管理上&#xff0c;许多用户都是通过宝塔面板进行管理&#xff0c;宝塔面板的Nginx默认监听端口为80和443&#xff0c;这就导致共存部署时雷池…

信息安全工程师(23)网络安全体系相关模型

前言 网络安全体系相关模型是描述网络安全体系如何实现的理论框架和抽象模型&#xff0c;它们为理解和设计网络安全解决方案提供了系统化的方法。 1. PDR模型 提出者&#xff1a;美国国际互联网安全系统公司(ISS)核心内容&#xff1a;保护(Protection)、检测(Detection)、响应(…

MongoDB 双活集群在运营商的实践

在现代电信行业中&#xff0c;订单中心作为核心业务系统之一&#xff0c;承担着处理客户订单、管理订单状态、与各个业务系统进行交互等重要职责。其订单中心的高效运作直接关系到客户体验和业务连续性。为了满足不断增长的业务需求和日益复杂的运营环境&#xff0c;运营商需要…

华为HarmonyOS地图服务 11 - 如何在地图上增加点注释?

场景介绍 本章节将向您介绍如何在地图的指定位置添加点注释以标识位置、商家、建筑等&#xff0c;并可以通过信息窗口展示详细信息。 点注释支持功能&#xff1a; 支持设置图标、文字、碰撞规则等。支持添加点击事件。 PointAnnotation有默认风格&#xff0c;同时也支持自定…

11.梯度下降法的思想——举足轻重的模型优化算法

引言 优化算法在机器学习和人工智能中扮演者至关重要的角色。机器学习模型的训练过程本质上是一个优化问题&#xff0c;即通过调整模型参数来最小化损失函数。梯度下降法(Gradient Descent)在优化算法中占据着重要的地位&#xff0c;因其简单、有效且易于实现。 通过阅读本篇…

jupyter使用pytorch

1、激活环境 以下所有命令都在Anaconda Prompt中操作。 conda activate 环境名称我的环境名称是myenv 如果不知道自己的pytorch配在哪个环境&#xff0c;就用下面方法挨个试。 2、安装jupyter 1、安装 pip install jupyter2、如果已经安装&#xff0c;检查jupyter是否已…

【机器学习(九)】分类和回归任务-多层感知机(Multilayer Perceptron,MLP)算法-Sentosa_DSML社区版

文章目录 一、算法概念二、算法原理&#xff08;一&#xff09;感知机&#xff08;二&#xff09;多层感知机1、隐藏层2、激活函数sigma函数tanh函数ReLU函数 3、反向传播算法 三、算法优缺点&#xff08;一&#xff09;优点&#xff08;二&#xff09;缺点 四、MLP分类任务实现…