【机器学习(九)】分类和回归任务-多层感知机(Multilayer Perceptron,MLP)算法-Sentosa_DSML社区版

文章目录

  • 一、算法概念
  • 二、算法原理
    • (一)感知机
    • (二)多层感知机
      • 1、隐藏层
      • 2、激活函数
        • sigma函数
        • tanh函数
        • ReLU函数
      • 3、反向传播算法
  • 三、算法优缺点
    • (一)优点
    • (二)缺点
  • 四、MLP分类任务实现对比
    • (一)数据加载和样本分区
      • 1、Python代码
      • 2、Sentosa_DSML社区版
    • (二)模型训练
      • 1、Python代码
      • 2、Sentosa_DSML社区版
    • (三)模型评估和模型可视化
      • 1、Python代码
      • 2、Sentosa_DSML社区版
  • 五、MLP回归任务实现对比
    • (一)数据加载和样本分区
      • 1、Python代码
      • 2、Sentosa_DSML社区版
    • (二)模型训练
      • 1、Python代码
      • 2、Sentosa_DSML社区版
    • (三)模型评估和模型可视化
      • 1、Python代码
      • 2、Sentosa_DSML社区版
  • 六、总结

一、算法概念

什么是多层感知机?
  多层感知机 (Multilayer Perceptron,MLP) 是一种人工神经网络,由多层神经元或节点组成,这些神经元或节点以分层结构排列。它是最简单且使用最广泛的神经网络之一,尤其适用于分类和回归等监督学习任务。
  多层感知器运作的核心原理在于反向传播,是用于训练网络的关键算法。在反向传播过程中,网络通过将误差从输出层反向传播到输入层来调整其权重和偏差。这个迭代过程可以微调模型的参数,使其能够随着时间的推移做出更准确的预测。
  MLP 通常包括以下部分:
  输入层:接收输入数据并将其传递到隐藏层。输入层中的神经元数量等于输入特征的数量。
  隐藏层:由一层或多层神经元组成,用于执行计算并转换输入数据。可以调整每层  中的隐藏层和神经元的数量,以优化网络性能。
  激活函数:对隐藏层中每个神经元的输出应用非线性变换。常见的激活函数包括 Sigmoid、ReLU、tanh 等。
  输出层:网络的最终输出,例如分类标签或回归目标。输出层中的神经元数量取决于具体的数据,例如分类问题中的类别数量。
  权重和偏差:可调节参数,决定相邻层神经元之间的连接强度以及每个神经元的偏差。这些参数在训练过程中学习,以尽量减少网络预测与实际目标值之间的差异。
  损失函数:衡量网络预测与实际目标值之间的差异。MLP 的常见损失函数包括回归任务的均方误差和分类任务的交叉熵。
  MLP 使用梯度下降等优化算法反向传播进行训练,根据损失函数的梯度迭代调整权重和偏差。这个过程持续到网络收敛到一组可最小化损失函数的最佳参数。

二、算法原理

(一)感知机

  感知机由两层神经元组成,输入层接收外界信号后传递给输出层,如下图所示,
在这里插入图片描述
  感知机模型就是尝试找到一条直线,能够把所有的二元类别分离开,给定输入 x \mathbf{x} x ,权重 W \mathbf{W} W ,和偏移 b b b ,感知机输出:
o = σ ( ⟨ w , x ⟩ + b ) o=\sigma\left( \langle\mathbf{w}, \mathbf{x} \rangle+b \right) o=σ(w,x+b)
σ ( x ) = { 1   x > 0 − 1   x ≤ 0 \quad\sigma( x )=\left\{\begin{array} {l l} {{1}} & {{\mathrm{~} x > 0}} \\ {{-1}} & {{\mathrm{~} x\leq0}} \\ \end{array} \right. σ(x)={11 x>0 x0
  初始化权重向量 w 和偏置 b,然后对于分类错误的样本不断更新w和b,直到所有样本都被正确分类。等价于使用批量大小为1的梯度下降,并使用如下的损失函数:
ℓ ( y , x , w ) = max ⁡ ( 0 , − y ⟨ w , x ⟩ ) \ell( y, {\bf x}, {\bf w} )=\operatorname* {m a x} ( 0,-y \langle{\bf w}, {\bf x} \rangle) (y,x,w)=max(0,yw,x⟩)
  感知机只能产生线性分割面,感知机算法的训练过程如下。
在这里插入图片描述

(二)多层感知机

1、隐藏层

  多层感知机则是在单层神经网络的基础上引入一个或多个隐藏层,使神经网络有多个网络层,下图为两个多层感知机示意图,分别为单隐层和双隐层
在这里插入图片描述
在这里插入图片描述
  多层感知机中的隐藏层和输出层都是全连接层,输入 X ∈ R n × d X \in\mathbb{R}^{n \times d} XRn×d ,其中, n n n 是批量大小, d d d 是输入特征的数量。输出 O ∈ R n × q O \in\mathbb{R}^{n \times q} ORn×q ,其中 q q q 是输出单元的数量。
  设隐藏层有 h h h 个隐藏单元,隐藏层的输出 H H H 是通过输入 X X X 与隐藏层的权重 W h ∈ R d × h W_{h} \in\mathbb{R}^{d \times h} WhRd×h 和偏置 b h ∈ R 1 × h b_{h} \in\mathbb{R}^{1 \times h} bhR1×h 计算得到的: H = X W h + b h H=X W_{h}+b_{h} H=XWh+bh
  输出层的权重为 W o ∈ R h × q W_{o} \in\mathbb{R}^{h \times q} WoRh×q ,偏置为 b o ∈ R 1 × q b_{o} \in\mathbb{R}^{1 \times q} boR1×q 。因此,输出层的输出 O O O 为: O = H W o + b o O=H W_{o}+b_{o} O=HWo+bo
  将隐藏层的输出 H H H 代入到输出层的方程中,得到如下计算过程:
O = ( X W h + b h ) W o + b o = X W h W o + b h W o + b o O=( X W_{h}+b_{h} ) W_{o}+b_{o}=X W_{h} W_{o}+b_{h} W_{o}+b_{o} O=(XWh+bh)Wo+bo=XWhWo+bhWo+bo
  通过联立后的式子可以看出,尽管引入了隐藏层,模型的计算仍然可以视作单层神经网络,其中,权重矩阵等于 W h W o W_{h} W_{o} WhWo,偏置等于 b h W o + b o b_{h} W_{o}+b_{o} bhWo+bo
  这表示,尽管引入了隐藏层,在不采用非线性激活函数的情况下,这个设计只能等价于单层神经网络。引入隐藏层的真正意义在于通过非线性激活函数(如ReLU、Sigmoid等)来引入复杂的非线性关系,使得模型具备更强的表达能力。

2、激活函数

  激活函数是 MLP的关键组成部分。它们将非线性引入网络,使其能够对复杂问题进行建模。如果没有激活函数,无论有多少层,MLP都相当于单层线性模型。
激活函数需要具备以下几点性质:

  1. 连续并可导(允许少数点上不可导),便于利用数值优化的方法来学习网络参数
  2. 激活函数及其导函数要尽可能的简单,有利于提高网络计算效率
  3. 激活函数的导函数的值域要在合适区间内,不能太大也不能太小,否则会影响训练的效率和稳定性
    以下列举常用的三个激活函数
sigma函数

s i g m a ( z ) = 1 1 + exp ⁡ ( − z ) sigma( z )=\frac{1} {1+\operatorname{e x p} (-z )} sigma(z)=1+exp(z)1
  sigma函数也称为 S \mathrm{S} S 型函数,可以将任何实值数映射到 0 0 0 1 1 1 之间的值。呈S形,具有明确定义的非零导数,这使其适合与反向传播算法一起使用。
在这里插入图片描述
  sigmoid函数的导数表达式为:
s i g m a ′ ( z ) = s i g m a ( z ) × ( 1 − s i g m a ( z ) ) sigma^{\prime} ( z )=sigma( z ) \times( 1-sigma ( z ) ) sigma(z)=sigma(z)×(1sigma(z))
  如下所示:
在这里插入图片描述

tanh函数

tanh ⁡ ( z ) = 1 − exp ⁡ ( − 2 z ) 1 + exp ⁡ ( − 2 z ) \operatorname{t a n h} ( z )=\frac{1-\operatorname{e x p} (-2z )} {1+\operatorname{e x p} (-2z )} tanh(z)=1+exp(2z)1exp(2z)
  双曲正切函数与逻辑函数类似,但输出值在-1和 1 1 1 之间。这种居中效果有助于加快训练期间的收敛速度。
在这里插入图片描述
  tanh导数表达式如下所示:
t a n h ′ ( z ) = 1 − tanh ⁡ 2 ( z ) tanh^{\prime} ( z)=1-\operatorname{t a n h}^{2} ( z ) tanh(z)=1tanh2(z)
  下面绘制了tanh函数的导数。当输入为0时,tanh函数的导数达到最大值1;当输入越偏离0时,tanh函数的导数越接近0。
在这里插入图片描述

ReLU函数

R e L U ( z ) = max ⁡ ( 0 , z ) \mathrm{R e L U} ( z )=\operatorname* {m a x} ( 0, z ) ReLU(z)=max(0,z)
  ReLU 函数因其简单性和有效性而被广泛应用于深度学习。如果输入值为正,则输出输入值;否则输出零。尽管 ReLU 在零处不可微,并且对于负输入具有零梯度,但它在实践中表现良好,有助于缓解梯度消失问题
在这里插入图片描述
  当输入为负数时,ReLU函数的导数为0;当输入为正数时,ReLU函数的导数为1,
  ReLU 函数的导数表达式为:
R e L U ′ ( z ) = { 1 i f   z > 0 0 i f   z ≤ 0 R e L U^{\prime} ( z )=\begin{cases} {{1}} & {{\mathrm{i f ~} z > 0}} \\ {{0}} & {{\mathrm{i f ~} z \leq0}} \\ \end{cases} ReLU(z)={10if z>0if z0
  下面绘制ReLU函数的导数,
在这里插入图片描述

3、反向传播算法

1、前向传播
  前向传播是反向传播的前提。在前向传播过程中,数据从输入层逐步传递至输出层,经过每一层的计算,最终得到预测输出。
  具体步骤如下:
  1、输入数据传递给神经网络的输入层。
  2、输入层经过一系列权重(W)和偏置(b)的线性运算,然后通过激活函数传递到隐藏层。
  3、逐层传递,直至数据到达输出层,输出层生成预测值 y ^ \hat{y} y^
  表达式如下:
y ^ = f ( W 3 ⋅ f ( W 2 ⋅ f ( W 1 ⋅ x + b 1 ) + b 2 ) + b 3 ) \hat{y}=f ( W_{3} \cdot f ( W_{2} \cdot f ( W_{1} \cdot x+b_{1} )+b_{2} )+b_{3} ) y^=f(W3f(W2f(W1x+b1)+b2)+b3)
  其中, W 1 , W 2 , W 3 W_{1}, W_{2}, W_{3} W1,W2,W3 是权重矩阵, b 1 , b 2 , b 3 b_{1}, b_{2}, b_{3} b1,b2,b3 是偏置, f ( ⋅ ) f ( \cdot) f() 是激活函数。
2、 损失函数
  在得到输出后,通过损失函数计算预测结果与真实标签之间的误差,常见的损失函数有:
  MSE(均方误差):通常用于回归问题,输出与标签之差的平方的均值。计算公式如下:
M S E = 1 n ∑ i = 1 n ( y i − y ^ i ) 2 MSE=\frac{1} {n} \sum_{i=1}^{n} ( y_{i}-\hat{y}_{i} )^{2} MSE=n1i=1n(yiy^i)2
  其中, y i y_{i} yi 是真实值, y ^ i \hat{y}_{i} y^i 是预测值, n n n 是样本数量。
  CE(交叉熵损失):通常用于回归问题。计算公式如下:
H ( p , q ) = − ∑ i = 1 n p ( x i ) log ⁡ q ( x i ) H(p,q)=-\sum_{i=1}^{n}p(x_{i}) \operatorname{log}q(x_{i}) H(p,q)=i=1np(xi)logq(xi)
  其中, p ( x i ) p ( x_{i} ) p(xi) 是真实分布, q ( x i ) q ( x_{i} ) q(xi) 是预测分布。
3、反向传播
  反向传播根据微积分中的链式规则,按相反的顺序从输入层遍历网络。用于权重更新,使网络输出更接近标签。
  假设有两个函数 y = f ( u ) y=f ( u ) y=f(u) u = g ( x ) u=g ( x ) u=g(x) ,根据链式法则, y y y x x x 的导数为:
∂ y ∂ x = ∂ y ∂ u ∂ u ∂ x \frac{\partial y} {\partial x}=\frac{\partial y} {\partial u} \frac{\partial u} {\partial x} xy=uyxu
  在神经网络中,损失函数 L L L 对某一层权重 W W W 的导数可以通过链式法则分解为:
∂ L ∂ W = ∂ L ∂ y ⋅ ∂ y ∂ W \frac{\partial L} {\partial W}=\frac{\partial L} {\partial y} \cdot\frac{\partial y} {\partial W} WL=yLWy
4、梯度下降
  在反向传播过程中,利用梯度下降算法来更新权重,使得损失函数的值逐渐减小。权重更新的公式为:
W ( h ) = W ( o ) − η ⋅ ∂ L ∂ W W^{(h )}=W^{( o )}-\eta\cdot\frac{\partial L} {\partial W} W(h)=W(o)ηWL
  其中, η \eta η 是学习率,决定了每次权重调整的步长大小, ∂ L ∂ W \frac{\partial L} {\partial W} WL 是损失函数相对于权重的梯度。

三、算法优缺点

(一)优点

  可以通过多个隐藏层和非线性激活函数,学习到更复杂的特征表示,从而提高模型的表达能力。
  可以用于分类、回归和聚类等各种机器学习任务,目在许多领域中取得了很好的效果。
  可以诵过并行计算和GPU加速等技术,高效地处理大规模数据集,适用于大规模深度学习应用。

(二)缺点

  参数较多,容易在训练集上过拟合,需要采取正则化、dropout等方法来缓解过拟合问题。
  通常需要大量的标记数据进行训练,并且在训练过程中需要较高的计算资源,包括内存和计算
能力。
  MLP的性能很大程度上依赖于超参数的选择。

四、MLP分类任务实现对比

(一)数据加载和样本分区

1、Python代码

from sklearn.datasets import load_iris

# 加载iris数据集
iris = load_iris()
X, y = iris['data'], iris['target']

# 样本分区
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

2、Sentosa_DSML社区版

  首先,利用数据读入中的文本算子对数据进行读取,
在这里插入图片描述
  然后连接样本分区算子划分训练集和测试集,
在这里插入图片描述
  再接类型算子,设置Feature列和Label列,
在这里插入图片描述

(二)模型训练

1、Python代码

  使用sklearn自动构建MLP模型

from sklearn.neural_network import MLPClassifier

# 定义MLP分类器模型,使用l-bfgs优化算法,隐藏层设置为100, 50,最大迭代次数200,设置tol为0.000001
mlp_clf = MLPClassifier(hidden_layer_sizes=(100, 50), max_iter=200, alpha=1e-4,
                        solver='lbfgs', tol=1e-6, random_state=42)
# 训练模型
mlp_clf.fit(X_train, y_train)

# 预测训练集和测试集
y_train_pred = mlp_clf.predict(X_train)
y_test_pred = mlp_clf.predict(X_test)

2、Sentosa_DSML社区版

  连接多层感知机分类算子,右击算子,点击运行,可以得到多层感知机分类模型。右侧进行超参数等设置,隐藏层设置为(100, 50),使用l-bfgs优化算法,最大迭代次数200,设置收敛偏差为0.000001。
在这里插入图片描述

(三)模型评估和模型可视化

1、Python代码

from sklearn.metrics import accuracy_score, precision_recall_fscore_support

# 计算训练集评估指标
accuracy_train = accuracy_score(y_train, y_train_pred)
precision_train, recall_train, f1_train, _ = precision_recall_fscore_support(y_train, y_train_pred, average='weighted')

# 计算测试集评估指标
accuracy_test = accuracy_score(y_test, y_test_pred)
precision_test, recall_test, f1_test, _ = precision_recall_fscore_support(y_test, y_test_pred, average='weighted')

# 输出训练集评估指标
print(f"Training Set Metrics:")
print(f"Accuracy: {accuracy_train * 100:.2f}%")
print(f"Weighted Precision: {precision_train:.2f}")
print(f"Weighted Recall: {recall_train:.2f}")
print(f"Weighted F1 Score: {f1_train:.2f}")

# 输出测试集评估指标
print(f"\nTest Set Metrics:")
print(f"Accuracy: {accuracy_test * 100:.2f}%")
print(f"Weighted Precision: {precision_test:.2f}")
print(f"Weighted Recall: {recall_test:.2f}")
print(f"Weighted F1 Score: {f1_test:.2f}")

from sklearn.metrics import confusion_matrix

# 计算测试集的混淆矩阵
conf_matrix = confusion_matrix(y_test, y_test_pred)

import matplotlib.pyplot as plt
from sklearn.inspection import permutation_importance

# 使用 sklearn 提供的permutation_importance方法计算特征重要性
result = permutation_importance(mlp_clf, X_test, y_test, n_repeats=10, random_state=42)

# 可视化特征重要性
plt.figure(figsize=(8, 6))
plt.barh(range(X.shape[1]), result.importances_mean, align='center')
plt.yticks(np.arange(X.shape[1]), iris['feature_names'])
plt.xlabel('Mean Importance Score')
plt.title('Permutation Feature Importance')
plt.show()

在这里插入图片描述

2、Sentosa_DSML社区版

  模型后可以连接评估算子,对模型的分类结果进行评估。算子流如下图所示,
在这里插入图片描述
  执行完成后可以得到训练集和测试集的评估,评估结果如下:
在这里插入图片描述
在这里插入图片描述
  右击模型,查看模型的模型信息,如下所示:
在这里插入图片描述

五、MLP回归任务实现对比

(一)数据加载和样本分区

1、Python代码

# 读入winequality数据集
df = pd.read_csv("D:/sentosa_ML/Sentosa_DSML/mlServer/TestData/winequality.csv")

# 将数据集划分为特征和标签
X = df.drop("quality", axis=1)  # 特征,假设标签是 "quality"
Y = df["quality"]  # 标签

# 划分数据集为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=42)

2、Sentosa_DSML社区版

  首先通过数据读入算子读取数据,
在这里插入图片描述
  中间接样本分区算子对训练集和测试集进行划分,
在这里插入图片描述
  然后接类型算子,设置Feature列和Label列,
在这里插入图片描述

(二)模型训练

1、Python代码

使用 scikit-learn 库中的多层感知机回归模型(MLPRegressor)

# 对数据进行标准化
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

# 定义MLP回归模型,使用l-bfgs优化算法,隐藏层设置为50,10,最大迭代次数300,设置tol为0.000001
mlp_reg = MLPRegressor(hidden_layer_sizes=(50, 10), solver='lbfgs', max_iter=300, tol=1e-6, random_state=42)

# 训练模型
mlp_reg.fit(X_train_scaled, y_train)

2、Sentosa_DSML社区版

  连接标准化算子,对数据特征进行标准化计算,并执行得到标准化模型,
在这里插入图片描述
  其次,连接多层感知机回归算子,右击执行得到多层感知机回归模型。模型训练使用l-bfgs优化算法,隐藏层设置为50,10,最大迭代次数300,设置收敛偏差为0.000001,并选择计算特征重要性等。
在这里插入图片描述

(三)模型评估和模型可视化

1、Python代码

# 训练集上的评估
y_train_pred = mlp_reg.predict(X_train_scaled)

r2_train = r2_score(y_train, y_train_pred)
mae_train = mean_absolute_error(y_train, y_train_pred)
mse_train = mean_squared_error(y_train, y_train_pred)
rmse_train = np.sqrt(mse_train)
mape_train = np.mean(np.abs((y_train - y_train_pred) / y_train)) * 100
smape_train = 100 / len(y_train) * np.sum(2 * np.abs(y_train - y_train_pred) / (np.abs(y_train) + np.abs(y_train_pred)))

# 测试集上的评估
y_test_pred = mlp_reg.predict(X_test_scaled)

r2_test = r2_score(y_test, y_test_pred)
mae_test = mean_absolute_error(y_test, y_test_pred)
mse_test = mean_squared_error(y_test, y_test_pred)
rmse_test = np.sqrt(mse_test)
mape_test = np.mean(np.abs((y_test - y_test_pred) / y_test)) * 100
smape_test = 100 / len(y_test) * np.sum(2 * np.abs(y_test - y_test_pred) / (np.abs(y_test) + np.abs(y_test_pred)))

# 输出训练集评估指标
print(f"Training Set Metrics:")
print(f"R²: {r2_train:.2f}")
print(f"MAE: {mae_train:.2f}")
print(f"MSE: {mse_train:.2f}")
print(f"RMSE: {rmse_train:.2f}")
print(f"MAPE: {mape_train:.2f}%")
print(f"SMAPE: {smape_train:.2f}%")

# 输出测试集评估指标
print(f"\nTest Set Metrics:")
print(f"R²: {r2_test:.2f}")
print(f"MAE: {mae_test:.2f}")
print(f"MSE: {mse_test:.2f}")
print(f"RMSE: {rmse_test:.2f}")
print(f"MAPE: {mape_test:.2f}%")
print(f"SMAPE: {smape_test:.2f}%")

# 计算残差
residuals = y_test - y_test_pred

# 使用 Seaborn 绘制带核密度估计的残差直方图
plt.figure(figsize=(8, 6))
sns.histplot(residuals, kde=True, bins=20)
plt.title('Residuals Histogram with KDE')
plt.xlabel('Residuals')
plt.ylabel('Frequency')
plt.grid(True)
plt.show()

在这里插入图片描述

2、Sentosa_DSML社区版

  模型后可接评估算子,对模型的回归结果进行评估。
在这里插入图片描述
  训练集和测试集的评估结果如下所示:
在这里插入图片描述
在这里插入图片描述
  右键查看模型信息,可以得到特征重要性等可视化计算结果。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

六、总结

  相比传统代码方式,利用Sentosa_DSML社区版完成机器学习算法的流程更加高效和自动化,传统方式需要手动编写大量代码来处理数据清洗、特征工程、模型训练与评估,而在Sentosa_DSML社区版中,这些步骤可以通过可视化界面、预构建模块和自动化流程来简化,有效的降低了技术门槛,非专业开发者也能通过拖拽和配置的方式开发应用,减少了对专业开发人员的依赖。
  Sentosa_DSML社区版提供了易于配置的算子流,减少了编写和调试代码的时间,并提升了模型开发和部署的效率,由于应用的结构更清晰,维护和更新变得更加容易,且平台通常会提供版本控制和更新功能,使得应用的持续改进更为便捷。

  为了非商业用途的科研学者、研究人员及开发者提供学习、交流及实践机器学习技术,推出了一款轻量化且完全免费的Sentosa_DSML社区版。以轻量化一键安装、平台免费使用、视频教学和社区论坛服务为主要特点,能够与其他数据科学家和机器学习爱好者交流心得,分享经验和解决问题。文章最后附上官网链接,感兴趣工具的可以直接下载使用

https://sentosa.znv.com/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/883956.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

多模态大模型学习(一)

参考:https://www.bilibili.com/video/BV1kT411o7a6?p2&spm_id_frompageDriver&vd_source156234c72054035c149dcb072202e6be 余弦相似度,让正样本内积趋近于1,负样本趋近于-1。度量学习。N特别大时,负样本远大于正样本&…

喜报!厦门唐普信息技术斩获 厦门火炬高新区“火炬瞪羚企业” 殊荣

近日,依据《厦门火炬高新区关于支持科技企业创新提质发展的若干措施》(厦高管规 [2024] 3 号),火炬管委会启动了 2024 年度 “火炬瞪羚企业” 认定工作。 厦门火炬高新区管委会对2024年“火炬瞪羚企业”名单进行了公示&#xff0…

机器翻译之多头注意力(MultiAttentionn)在Seq2Seq的应用

目录 1.多头注意力(MultiAttentionn)的理念图 2.代码实现 2.1创建多头注意力函数 2.2验证上述封装的代码 2.3 创建 添加了Bahdanau的decoder 2.4训练 2.5预测 3.知识点个人理解 1.多头注意力(MultiAttentionn)的理念图…

protobuf编码方式

protobuf编码方式 一个简单的例子 message Test1 {optional int32 a 1; }上述的proto文件,设置a 150,那么将其序列化后,得到的数据就是08 96 01,然后你使用protoscope工具去解析这些数据,就得到1 : 150&#xff0c…

基于深度学习的花卉智能分类识别系统

温馨提示:文末有 CSDN 平台官方提供的学长 QQ 名片 :) 1. 项目简介 传统的花卉分类方法通常依赖于专家的知识和经验,这种方法不仅耗时耗力,而且容易受到主观因素的影响。本系统利用 TensorFlow、Keras 等深度学习框架构建卷积神经网络&#…

【Linux:共享内存】

共享内存的概念: 操作系统通过页表将共享内存的起始虚拟地址映射到当前进程的地址空间中共享内存是由需要通信的双方进程之一来创建但该资源并不属于创建它的进程,而属于操作系统 共享内存可以在系统中存在多份,供不同个数,不同进…

推荐5款压箱底的宝贝,某度搜索就有

​ 今天要给大家推荐5款压箱底的宝贝软件了,都是在某度搜索一下就能找到的好东西。 1.桌面壁纸——WinDynamicDesktop ​ WinDynamicDesktop是一款创新的桌面壁纸管理工具,能根据用户的地理位置和时间自动更换壁纸。软件内置多个美丽的动态壁纸主题&am…

苹果电脑系统重磅更新——macOS Sequoia 15 系统 新功能一 览

有了 macoS Sequoia,你的工作效率将再次提升:快速调整桌面布局,一目了然地浏览网页重点,还可以通过无线镜像功能操控你的iPhone。 下面就来看看几项出色新功能,还有能够全面发挥这些功能的 App 和游戏。 macOS Sequo…

智能新突破:AIOT 边缘计算网关让老旧水电表图像识别

数字化高速发展的时代,AIOT(人工智能物联网)技术正以惊人的速度改变着我们的生活和工作方式。而其中,AIOT 边缘计算网关凭借其强大的功能,成为了推动物联网发展的关键力量。 这款边缘计算网关拥有令人瞩目的 1T POS 算…

使用build_chain.sh离线搭建匹配的区块链,并通过命令配置各群组节点的MySQL数据库

【任务】 登陆Linux服务器,以MySQL分布式存储方式安装并部署如图所示的三群组、四机构、 七节点的星形组网拓扑区块链系统。其中,三群组名称分别为group1、group2和group3, 四个机构名称为agencyA、agencyB、agencyC、agencyD。p2p_port、cha…

powerbi计算销售额累计同比增长率——dax

目录 效果展示: 一、建立日期表 二、建立度量值 1.销售收入 2.本年累计销售额 3.去年累计销售额 4.累计同比增长率 三、矩阵表制作 效果展示: 数据包含2017-2019年的销售收入数据 一、建立日期表 日期表建立原因及步骤见上一篇文章https://blog…

数据处理与统计分析篇-day11-RFM模型案例

会员价值度模型介绍 会员价值度用来评估用户的价值情况,是区分会员价值的重要模型和参考依据,也是衡量不同营销效果的关键指标之一。 价值度模型一般基于交易行为产生,衡量的是有实体转化价值的行为。常用的价值度模型是RFM RFM模型是根据…

UNI-SOP应用场景(1)- 纯前端预开发

在平时新项目开发中,前端小伙伴是否有这样的经历,hi,后端小伙伴们,系统啥时候能登录,啥时候能联调了,这是时候往往得到的回答就是,再等等,我们正在搭建系统呢,似曾相识的…

20个数字经济创新发展试验区建设案例【2024年发布】

数据简介:国家数字经济创新发展试验区的建设是一项重要的国家战略,旨在推动数字经济与实体经济的深度融合,促进经济高质量发展。自2019年10月启动以来,包括河北省(雄安新区)、浙江省、福建省、广东省、重庆…

通过OpenScada在ARMxy边缘计算网关上实现数字化转型

随着工业4.0概念的普及,数字化转型已成为制造业升级的关键路径之一。在此背景下,边缘计算技术因其能够有效处理大量数据、减少延迟并提高系统响应速度而受到广泛关注。ARMxy边缘计算网关,特别是BL340系列,凭借其强大的性能和灵活的…

Linux网络之UDP与TCP协议详解

文章目录 UDP协议UDP协议数据报报头 TCP协议确认应答缓冲区 超时重传三次握手其他问题 四次挥手滑动窗口流量控制拥塞控制 UDP协议 前面我们只是说了UDP协议的用法,但是并没有涉及到UDP协议的原理 毕竟知道冰箱的用法和知道冰箱的原理是两个层级的事情 我们首先知道计算机网…

使用API有效率地管理Dynadot域名,设置域名服务器(NS)

前言 Dynadot是通过ICANN认证的域名注册商,自2002年成立以来,服务于全球108个国家和地区的客户,为数以万计的客户提供简洁,优惠,安全的域名注册以及管理服务。 Dynadot平台操作教程索引(包括域名邮箱&…

在虚幻引擎中实现Camera Shake 相机抖动/震屏效果

在虚幻引擎游戏中创建相机抖动有时能让画面更加高级 , 比如 遇到大型的Boss , 出现一些炫酷的特效 加一些短而快的 Camera Shake 能达到很好的效果 , 为玩家提供沉浸感 创建Camera Shake 调整Shake参数 到第三人称或第一人称蓝图 调用Camera Shake Radius值越大 晃动越强

拍卖的价格怎么定?聊聊转转拍卖场的起拍定价算法演变

价格策略、定价调价算法是诸多中大规模电商不可或缺的一项能力,涉及到精准定价、智能调价、智能发券、成本控制等一系列智能运营场景,尤其对于二手行业来说,定价能力更是面临诸多挑战,却又不可或缺。本文将旨在介绍转转 TOB 拍卖场…

kibana开启访问登录认证

编辑es配置文件,添加以下内容开启es认证 vim /etc/elasticsearch/elasticsearch.yml http.cors.enabled: true http.cors.allow-origin: "*" http.cors.allow-headers: Authorization xpack.security.enabled: true xpack.security.transport.ssl.enable…