【网络流】——初识(最大流)

网络流-最大流

    • 基础信息
      • 引入
      • 一些概念
      • 基本性质
  • 最大流
      • 定义
    • Ford–Fulkerson 增广
    • Edmons−Karp算法
    • Dinic 算法
      • 参考文献

基础信息

引入

假定现在有一个无限放水的自来水厂和一个无限收水的小区,他们之间有多条水管和一些节点构成。

每一条水管有三个属性:流向,流量,容量。我们用 ( u , v ) (u,v) (u,v) 表示一条水管,这意味着水管中的水只能从 u u u 流向 v v v,而不能从 v v v 流向 u u u。流量即经过这条水管的单位时间内经过这条水管的水量。

我们将其模型化成为一个有向图,如下图所示,边上的数字即为水管的容量,流向用箭头来表示。当然,现在所有的水管流量都是 0 0 0

在这里插入图片描述

对于这一类型的有向图,我们称之为流网络。

一些概念

对于一个流网络,我们有如下几个概念:

  • 源点:发送流的节点。
  • 汇点:接收流的节点。
  • 弧:流网络图中的有向边,为了方便,后文均用“边或弧”表示
  • 弧的流量:在一个流网络中,每一条边都有一个流量,即单位时间内流经该边的流的量。一般地,我们使用流量函数 f ( x , y ) f(x,y) f(x,y) 表示 ( x , y ) (x,y) (x,y) 的流量。
  • 弧的容量:在一个流网络中,每一条边都会有一个容量限制,即边上流量的最大值。一般地,我们使用容量函数 c ( x , y ) c(x,y) c(x,y) 表示 ( x , y ) (x,y) (x,y) 的容量。
  • 弧的残量:即每一条边的剩余容量,可以表示为 c ( x , y ) − f ( x , y ) c(x,y)-f(x,y) c(x,y)f(x,y),用 c f ( u , v ) c_f(u,v) cf(u,v) 表示
  • 容量网络:已知每一条边的容量的流网络即为容量网络
  • 流量网络:已知每一条边的流量的流网络即为流量网络
  • 残量网络:已知每一条边的残量的流网络即为残量网络。所有边的流量均为 0 0 0 的残量网络就是容量网络。用 G f G_f Gf 表示,即 G f = ( V , E f ) , E f = G_f=(V,E_f),E_f= Gf=(V,Ef),Ef={ ( u , v ) ∣ c f ( u , v ) > 0 (u,v)|c_f(u,v)>0 (u,v)cf(u,v)>0 }

请确保你对概念比较熟悉

基本性质

  1. 容量限制: ∀ ( x , y ) ∈ E , 0 ≤ f ( x , y ) ≤ c ( x , y ) \forall (x,y)\in E,0\le f(x,y)\le c(x,y) (x,y)E,0f(x,y)c(x,y)
  2. 斜对称性: ∀ ( x , y ) ∈ E , f ( x , y ) = − f ( y , x ) \forall (x,y)\in E,f(x,y)=-f(y,x) (x,y)E,f(x,y)=f(y,x)
  3. 流量守恒:除了源点与汇点之外,流入任何节点的流一定等于流出该节点的流。

最大流

定义

在这里插入图片描述
通俗地讲,回到引例,现在有一个问题需要我们去解决:水厂在单位时间内最多能发送多少水给小区?
这就是网络流中的一个问题:最大流问题。
在这里插入图片描述

Ford–Fulkerson 增广

  • 假设有源点到汇点的一条可行路径 R R R,满足 ∀ ( x , y ) ∈ R , c f ( x , y ) > 0 \forall(x,y)∈R,c_f(x,y)>0 (x,y)R,cf(x,y)>0,即残量为严格大于 0 0 0,我们称 R R R 为一条增广路。
  • 此时我们可以得出一个简单的思路:在残量网络中不断地寻找增广路,从源点向汇点发送流。该增广路的流量满足 0 < f ≤ m i n ( c f ( x , y ) ) 0<f\le min(c_f(x,y)) 0<fmin(cf(x,y)),为了取得最大流,我们自然而然的令该增广路的流量为 min ⁡ ( c f ( x , y ) ) \min(c_f(x,y)) min(cf(x,y)),然后修改路径上每一条边的残量即可。
  • 这个思路即为Ford−Fulkerson方法,简称为FF方法。
  • 可以使用DFS实现基本的Ford−Fulkerson算法。
  • 为了保证算法的正确性,有时候我们需要缩减流网络中一些特定边的流量。
  • 举个例子,如图。

假定我们使用DFS找到了红色的这一条增广路径,显然此时源点到汇点的流量为1。此时图中不再有任何增广路径,但是这个流是最大流吗?
在这里插入图片描述
显然不是,我们可以找到更好的,如图:

在这里插入图片描述
此时流量为 2 2 2,这才是最大流。

  • 问题出在哪里?
  • 由于我们没有给程序一个反悔的机会,所以才会出现上面这样的尴尬情况。
  • 那么如何解决这个问题呢?
  • 引入“后向弧”。我们给每一条边 ( u , v ) (u,v) (u,v) 建立一条对应的反向边 ( v , u ) (v,u) (v,u),用于对正向边流量的缩减。
  • 很自然地,我们会把反向边的初始残量设置为 0 0 0,因为没有正向流量,无法缩减。
  • 那么观察下面的算法图示:

在这里插入图片描述
然后对于初学者可能会注意到:反向边的流量 f ( v , u ) f(v,u) f(v,u) 可能是一个负的,这里可以参考一下 OI-WIKI 的解释。

在这里插入图片描述
在这里插入图片描述

是不是有点懵?

  • 通俗的文字解释就是:反向边的功能是将正向边的流量往回推送,此时反向边推送的流量(反向流量)最多恰好把正向流量抵消,所以反向边的残量等于正向边流量。
  • 综上所述,反向边的残量应当是动态更新,一旦正向边的流量更新,反向边的残量也需要更新。

Edmons−Karp算法

观察到基于 DFS 的FF 可能不是很优。

  • 观察这样一张图,如果我们使用基于DFS实现的FF方法,假定一开始找到的增广路径为红色的这一条,那么我们可能需要反复进行 999 × 2 999\times 2 999×2次DFS才能够找到最大流。
    在这里插入图片描述
  • 但是事实上,我们在最好情况下只需要走两次(直接走 999 999 999 的边)就能够达到最大流。
  • 在这种情况下,我们引入EK算法。其基础仍然是FF方法,但是我们不再使用DFS,而是转为使用BFS寻找最短增广路改进效率,时间复杂度为 O ( n m 2 ) O(nm^2) O(nm2)

参考代码:

queue<int> que;flow[s]=0x3f3f3f3f;que.push(s);
for (int i=1;i<=n;i++)prep[i]=-1,pree[i]=0;
prep[s]=0;
while(!que.empty())
{
	int now=que.front();
	que.pop();
	for (int i=head[now];i;i=e[i].next)
	{
		if(e[i].val>0&&prep[e[i].to]==-1)
		{
			flow[e[i].to]=min(flow[now],e[i].val);//flow记录的是在增广路上经过该点的流量
			pree[e[i].to]=i;//用于记录前驱边的编号
			prep[e[i].to]=now;//用于记录前驱节点
			if (e[i].to==t) break;
			que.push(e[i].to);
		}
	}
}
if (prep[t]!=-1) return flow[t];
else return -1
  • 下一步就是对路径上的所有边进行信息的更新。
  • 现在有一个问题,我们如何快速取得反向边呢?
  • 对于链式前向星,我们设置第一条边的编号为 2 2 2 ,我们存入一条正向边时,下一条边就存入反向边,那么只要对一条边的编号异或 1 1 1 就能取得它对应的反向边。
  • 证明:偶数的二进制表示最后一位为 0 0 0 ,对这个偶数异或 1 1 1 相当于对这个偶数 + 1 +1 +1。奇数的二进制表示最后一位为 1 1 1,对这个奇数异或 1 1 1 相当于对这个奇数 − 1 -1 1
    那么路径的信息更新就可以轻松实现了。
    在这里插入图片描述

Dinic 算法

  • 由于EK算法每次只求一条最短增广路,其效率在某些情况下可能不够优秀。
  • 对于下面这一张图,如果我们使用EK算法,那么我们至少需要重复三次EK算法的流程才能求出最大流。

在这里插入图片描述

  • 自然而然地,我们会想到能不能实现多路增广呢?

于是 Dinic 算法就出来了。(其实就是把EK和FF融在一起)

Dinic算法的流程如下:

  1. BFS对流网络分层。
  2. DFS对图上增广路的信息进行更新。
    在这里插入图片描述

如图所示,此时已经完成了对于流网络的分层,点上的编号即为所在的层数。
这个时候我们从源点开始DFS,在最好情况下,我们能同时找到三条增广路,即标红色的三条。

  • BFS对图分层的作用在于一次可以得到多条长度相同的最短增广路。
  • 那么路径的信息应该如何更新呢?
  • 每次从当前点出发,选用从当前点所在层到下一层的边,发送一定的流量,流量的大小取边残量和当前点从源点获取的剩余流中两者的最小值。
  • 搜索完成后,即不再有流能够往后发送,或者能够抵达汇点。此时返回一个流量值,即这条增广路的流量(若不再有流能够往后发送,则返回的流量值为0),此时就能够对边和反向边的残量进行更新了。
  • Dinic算法就完成了,其时间复杂度为 O ( n 2 m ) O(n^2 m) O(n2m)
  • 显然,这样的时间复杂度并算不上多么高效,原因在于尽管我们一次BFS找到了多条增广路,但是DFS时路径的信息仍然是一条一条更新的。
    参考代码:
    BFS实现:
    在这里插入图片描述

实现难度不大,只是一个模板BFS。
dis数组用于记录层数,vis数组用于记录是否被访问过。
事实上vis数组是不必要的,因为dis数组也可以实现一样的功能。

DFS实现:
在这里插入图片描述

注意到,Dinic算法的复杂度上界也不是很优, 所以,我们会考虑对DFS的过程加入一定的优化。

当前弧优化

  • 在DFS的过程中,我们可能会多次经过一个点。我们会重复的处理一些边。
  • 但是事实上,在每次处理的过程中,已经处理完毕的边在这次DFS中不再有任何作用,一旦处理完毕,该边的“潜力”一定已经被榨干了。
  • 所以,我们每次只需要记录当前处理的边的编号,下次经过这个点的时候,可以直接从这条边开始。
  • 这就叫作当前弧优化。

证明:增广次数为 O ( m ) O(m) O(m),每次增广最多经过 O ( n ) O(n) O(n) 个点,总复杂度为 O ( n m ) O(nm) O(nm)

注意,不写这个优化,复杂度是错的,可能退化为 O ( n m 2 ) O(nm^2) O(nm2)

点优化:

  • 假如从一个点流不出流量,则把该点的dis变为 − 1 -1 1,这样这一次多路增广再也不会来了。

  • 大多数情况下这只能优化常数,但是在某些毒瘤题里面跑的很快。

这就是常用的两个优化,更多的可以参考 command_block大佬的博客。

虽然EK和Dinic的时间复杂度上界都不是非常优秀,但是在实际应用上效率非常高。
对于EK算法,一般能够解决 1 0 3 到 1 0 4 10^3 \text{到}10^4 103104 的网络流问题。
对于Dinic算法,一般能够解决 1 0 4 到 1 0 5 10^4 \text{到}10^5 104105 的网络流问题。

Dinic完整的参考代码:

#include<bits/stdc++.h>
#define int long long
#define IOS ios::sync_with_stdio(false),cin.tie(NULL),cout.tie(NULL)
using namespace std;
const int N=1e5+1,inf=1e9;
struct fy{
	int v,w,nxt;
}e[N];
int head[N],idx=1,n,m,s,t,ans=0,dis[N],cur[N],vis[N];
void add(int x,int y,int z){
	e[++idx].v=y,e[idx].w=z,e[idx].nxt=head[x],head[x]=idx;
}
bool bfs(){
	for(int i=1;i<=n;i++)
		dis[i]=0,vis[i]=0,cur[i]=head[i];
	vis[s]=1,dis[s]=1;
	queue<int>Q;
	Q.push(s);
	while(!Q.empty()){
		int u=Q.front();
		Q.pop();
		for(int i=head[u];i;i=e[i].nxt){
			int v=e[i].v;
			if(!vis[v]&&e[i].w>0){
				dis[v]=dis[u]+1;
				vis[v]=1;
				if(v==t)
					return 1;
				Q.push(v);
			}
		}
	}
	return 0;
	
}
int dfs(int u,int flow){
	if(!flow||u==t)
		return flow;
	int used=0;
	for(int i=cur[u];i;i=e[i].nxt){
		cur[u]=i;
		int v=e[i].v;
		if(dis[u]+1!=dis[v])
			continue;
		int _=dfs(v,min(flow-used,e[i].w));
		if(_){
			e[i].w-=_;
			e[i^1].w+=_;
			used+=_;
			if(flow-used==0)
				return flow;
		}
	}
	return used;
}
signed main(){
	IOS;
	cin>>n>>m>>s>>t;
	for(int i=1,x,y,z;i<=m;i++)
		cin>>x>>y>>z,add(x,y,z),add(y,x,0);
	while(bfs())
		ans+=dfs(s,inf);
	cout<<ans<<"\n";
	return 0;
}

当然,常用的是Dinic,但还有MPN算法,ISAP,Push-Relabel 预流推进算法 等其他方法,可能以后会填坑

参考文献

  1. OI-WIKI
  2. command_block的博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/869844.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【算法】单链表面试题

1.求单链表中有效节点的个数 //方法&#xff1a;获取到单链表的节点的个数(如果是带头节点的链表&#xff0c;不统计头节点)/**** param head 链表的头节点* return 返回有效节点的个数*/public static int getLength(HeroNode head) {if (head.next null) {return 0;}int le…

面试场景题系列--(2)短 URL 生成器设计:百亿短 URL 怎样做到无冲突?--xunznux

文章目录 面试场景题&#xff1a;短 URL 生成器设计&#xff1a;百亿短 URL 怎样做到无冲突&#xff1f;1. 需求分析2. 短链接生成算法2.1 自增法2.2 散列函数法2.3 预生成法 3. 部署模型3.1 其他部署方案 4. 设计4.1 重定向响应码4.2 短 URL 预生成文件及预加载4.3 用户自定义…

抖音直播弹幕数据逆向:websocket和JS注入

&#x1f50d; 思路与步骤详解 &#x1f575;️‍♂️ 思路介绍 首先&#xff0c;我们通过抓包工具进入的直播间&#xff0c;捕获其网络通信数据&#xff0c;重点关注WebSocket连接。发现直播弹幕数据通过WebSocket传输&#xff0c;这种方式比传统的HTTP更适合实时数据的传输。…

【LLM】-07-提示工程-聊天机器人

目录 1、给定身份 1.1、基础代码 1.2、聊天机器人 2、构建上下文 3、订餐机器人 3.1、窗口可视化 3.2、构建机器人 3.3、创建JSON摘要 利用会话形式&#xff0c;与具有个性化特性&#xff08;或专门为特定任务或行为设计&#xff09;的聊天机器人进行深度对话。 在 Ch…

聊聊基于Alink库的主成分分析(PCA)

概述 主成分分析&#xff08;Principal Component Analysis&#xff0c;PCA&#xff09;是一种常用的数据降维和特征提取技术&#xff0c;用于将高维数据转换为低维的特征空间。其目标是通过线性变换将原始特征转化为一组新的互相无关的变量&#xff0c;这些新变量称为主成分&…

基于opencv[python]的人脸检测

1 图片爬虫 这里的代码转载自&#xff1a;http://t.csdnimg.cn/T4R4F # 获取图片数据 import os.path import fake_useragent import requests from lxml import etree# UA伪装 head {"User-Agent": fake_useragent.UserAgent().random}pic_name 0 def request_pic…

idea springBoot启动时覆盖apollo配置中心的参数

vm options -Dorder.stat.corn“0/1 * * * * ?” 只有vm options, -D参数才能覆盖apollo参数 program arguments –key01val01 --key02val02 environment varibales envFAT;key02val02;key03val03

BGP选路之Preferred value

原理概述 当一台BGP路由器中存在多条去往同一目标网络的BGP路由时&#xff0c;BGP协议会对这些BGP路由的属性进行比较&#xff0c;以确定去往该目标网络的最优BGP路由&#xff0c;然后将该最优BGP路由与去往同一目标网络的其他协议路由进行比较&#xff0c;从而决定是否将该最优…

在 VM 虚拟机中安装 openEuler + 桌面

在 VM 虚拟机中安装 openEuler 1 介绍2 步骤语言Root 账户安装位置网络和主机名自动检索到【推荐】手动配置网络 软件选择安装完成登录测试网络curl ip / ping ipip link show / ip a如网络不通&#xff0c;可检查网卡状态和dns配置 安装命令设置以图形界面的方式启动【dde】第…

【屏显MCU】多媒体接口总结

本文主要介绍【屏显MCU】的基本概念&#xff0c;用于开发过程中的理解 以下是图层叠加示例 【屏显MCU】多媒体接口总结 0. 个人简介 && 授权须知1. 三大引擎1.1 【显示引擎】Display Engine1.1.1 【UI】 图层的概念1.1.2 【Video】 图层的概念1.1.3 图层的 Blending 的…

Linux——管理本地用户和组(详细介绍了Linux中用户和组的概念及用法)

目录 一、用户和组概念 &#xff08;一&#xff09;、用户的概念 &#xff08;二&#xff09;、组的概念 补充组 主要组 二、获取超级用户访问权限 &#xff08;一&#xff09;、su 命令和su -命令 &#xff08; 二&#xff09;、sudo命令 三、管理本地用户账户 &…

【OpenCV C++20 学习笔记】图片处理基础

OpenCV C20 图片处理基础 VS 2022 C20 标准库导入的问题头文件包含以及命名空间声明main函数读取图片读取检查显式图片写入图片 完整代码bug VS 2022 C20 标准库导入的问题 VS还没有完全兼容C20。C20的import语句不一定能正确导入标准库&#xff0c;所以必须要新建一个头文件专…

实时同步:使用 Canal 和 Kafka 解决 MySQL 与缓存的数据一致性问题

目录 1. 准备工作 2. 将需要缓存的数据存储 Redis 3. 监听 canal 存储在 Kafka Topic 中数据 1. 准备工作 1. 开启并配置MySQL的 BinLog&#xff08;MySQL 8.0 默认开启&#xff09; 修改配置&#xff1a;C:\ProgramData\MySQL\MySQL Server 8.0\my.ini log-bin"HELO…

Github个人网站搭建详细教程【Github+Jekyll模板】

文章目录 前言一、介绍1 Github Pages是什么2 静态网站生成工具3 Jekyll简介Jekyll 和 GitHub 的关系 4 Mac系统Jekyll的安装及使用安装Jekyll的简单使用 二、快速搭建第一个Github Pages网站三、静态网站模板——Chirpy1 个人定制 四、WordPress迁移到Github参考资料 前言 23…

机器学习笔记——决策树

定义 决策树是一种可以用来解决回归和分类的问题的算法 决策树使用树形结构&#xff0c;通过叶子节点上的条件层层推理&#xff0c;得到最终的结果 例如&#xff1a;通过上面的简单决策&#xff0c;我们可以通过形状这一条件决策出水果属于哪一类。 决策树的学习结果和取什么规…

在Windows安装、部署Tomcat的方法

本文介绍在Windows操作系统中&#xff0c;下载、配置Tomcat的方法。 Tomcat是一个开源的Servlet容器&#xff0c;由Apache软件基金会的Jakarta项目开发和维护&#xff1b;其提供了执行Servlet和Java Server Pages&#xff08;JSP&#xff09;所需的所有功能。其中&#xff0c;S…

ROS配置并同时驱动多个UVC相机(含功能包)

配置并同时驱动多个UVC相机&#xff0c;并将数据保存为ROS话题形式的bag文件。 ROS可以同时驱动多个UVC相机。要实现这个目标并将数据保存成ROS话题的形式&#xff0c;再保存为bag文件&#xff0c;可以按照以下步骤操作&#xff1a; 1. 安装必要的包 sudo apt-get update sud…

环境搭建-Docker搭建ClickHouse

Docker搭建ClickHouse 一、前言二、ClickHouse安装2.1 拉取镜像运行ClickHouse服务 三、测试安装3.1 进入clickhouse容器3.2 命令补充说明 四、测试连接五、设置CK的用户名密码 一、前言 本文使用的Docker使用Windows搭建&#xff0c;Linux版本的搭建方式一样。 Windows系统搭…

【笔记:3D航路规划算法】二、RRT*

目录 RRT*于RRT的不同之处1、路径优化&#xff1a;2、成本计算&#xff1a;3、重连线步骤&#xff1a; 图解1、初始化2、路径搜索3、效果展示 总结 3D路径规划是在三维空间中寻找从起点到终点的最短或最优路径的一种技术。它广泛应用于无人机导航、机器人运动规划、虚拟现实等领…

前台文本直接取数据库值doFieldSQL插入SQL

实现功能&#xff1a;根据选择的车间主任带出角色。 实现步骤&#xff1a;OA的“字段联动”功能下拉选项带不出表“hrmrolemembers”&#xff0c;所以采用此方法。 doFieldSQL("select roleid from HrmResource as a inner join hrmrolemembers as b on a.id b.resource…