聊聊基于Alink库的主成分分析(PCA)

概述

主成分分析(Principal Component Analysis,PCA)是一种常用的数据降维和特征提取技术,用于将高维数据转换为低维的特征空间。其目标是通过线性变换将原始特征转化为一组新的互相无关的变量,这些新变量称为主成分,它们按照方差递减的顺序排列,以保留尽可能多的原始数据信息。
主成分分析的基本思想可以总结如下:

  1. 寻找新的特征空间:PCA通过线性变换,寻找一组新的特征空间,使得新的特征具有以下性质:
    • 主成分具有最大的方差,尽可能保留原始数据的信息。
    • 不同主成分之间彼此无关,即它们是正交的(互相垂直)。
  2. 降低数据维度:保留方差较大的主成分,舍弃方差较小的主成分,从而实现数据降维。

主成分分析的步骤如下:

  • 中心化数据:将原始数据进行中心化,使得数据的均值为零。
  • 计算协方差矩阵:计算特征之间的协方差矩阵,描述了特征之间的线性关系。
  • 计算特征值和特征向量:对协方差矩阵进行特征值分解,得到特征值和对应的特征向量。
  • 选择主成分:按照特征值的大小选择保留的主成分数量,通常选择方差较大的前几个主成分。
  • 得到新的特征空间:将原始特征投影到选定的主成分上,得到新的特征空间。

主成分分析的应用包括降维、去除数据噪声、数据可视化、特征选择等。通过保留最重要的特征,可以在减少数据维度的同时保持对数据的关键信息进行捕获。
在实际使用中,有时会将各个变量进行标准化,此时的协方差矩阵就相当于原始数据的相关系数矩阵。所以Alink的主成分分析组件提供了两种计算选择,参数CalculationType可以设置为相关系数矩阵(CORR)或者协方差矩阵(COV),默认为相关系数矩阵,即对标准化后的数据计算其主成分。

Alink库中的实现与应用

示例

以美国50个州的7种犯罪率为例,做主成分分析。这7种犯罪分别是:“murder”, “rape”, “robbery”, “assault”, “burglary”, “larceny”, “auto”。从这7个变量出发来评价各州的治安和犯罪情况是很难的,而使用主成分分析可以把这些变量概括为2-3个综合变量(即主成分),便于更简便的分析这些数据。

/**
 * 主成分分析
 * 1.基于默认的计算方式(CORR),计算主成分
 * 2.设置K为4,将原先的7个维度降低到4个维度
 * 3.输出向量列,使用VectorToColumnsBatchOp组组件将向量列转为4个数据列,名称分别为"prin1, prin2, prin3, prin4"
 * */
static void c_1() throws Exception {

    MemSourceBatchOp source = new MemSourceBatchOp(CRIME_ROWS_DATA, CRIME_COL_NAMES);

    source.lazyPrint(10, "Origin data");

    BatchOperator <?> pca_result = new PCA()
        .setK(4)
        .setSelectedCols("murder", "rape", "robbery", "assault", "burglary", "larceny", "auto")
        .setPredictionCol(VECTOR_COL_NAME)
        .enableLazyPrintModelInfo()
        .fit(source)
        .transform(source)
        .link(
            new VectorToColumnsBatchOp()
                .setVectorCol(VECTOR_COL_NAME)
                .setSchemaStr("prin1 double, prin2 double, prin3 double, prin4 double")
                .setReservedCols("state")
        )
        .lazyPrint(10, "state with principle components");

    pca_result
        .select("state, prin1")
        .orderBy("prin1", 100, false)
        .lazyPrint(-1, "Order by prin1");

    pca_result
        .select("state, prin2")
        .orderBy("prin2", 100, false)
        .lazyPrint(-1, "Order by prin2");

    BatchOperator.execute();

}

当然还可以先将数据标准化后再做主成分分析。如下

/**
 * 主成分分析
 * 1. 先将数据标准化
 * 2. 设置计算方式为协方差计算,设置K为4,将原先的7个维度降低到4个维度
 * 3.输出向量列,使用VectorToColumnsBatchOp组组件将向量列转为4个数据列,名称分别为"prin1, prin2, prin3, prin4"
 * */
static void c_2() throws Exception {

    MemSourceBatchOp source = new MemSourceBatchOp(CRIME_ROWS_DATA, CRIME_COL_NAMES);

    Pipeline std_pca = new Pipeline()
        .add(
            new StandardScaler()
                .setSelectedCols("murder", "rape", "robbery", "assault", "burglary", "larceny", "auto")
        )
        .add(
            new PCA()
                .setCalculationType(CalculationType.COV)
                .setK(4)
                .setSelectedCols("murder", "rape", "robbery", "assault", "burglary", "larceny", "auto")
                .setPredictionCol(VECTOR_COL_NAME)
                .enableLazyPrintModelInfo()
        );

    std_pca
        .fit(source)
        .transform(source)
        .link(
            new VectorToColumnsBatchOp()
                .setVectorCol(VECTOR_COL_NAME)
                .setSchemaStr("prin1 double, prin2 double, prin3 double, prin4 double")
                .setReservedCols("state")
        )
        .lazyPrint(10, "state with principle components");
    BatchOperator.execute();

}

应用
在聚类方面的应用

主要通过降维来减少特征的维度,从而在聚类过程中降低数据的复杂度和计算成本,同时提高聚类的效果。主要实现过程如下:

  1. 使用 PCA 对数据进行降维,得到新的特征空间。设置降维后的维度,通常选择较小的维度以减少特征数。
  2. 在降维后的特征空间上应用聚类算法,比如 K-means、DBSCAN 等。
  3. 使用适当的聚类评估指标,如轮廓系数等,来评估聚类的效果。

示例代码如下:

/**
 * 聚类+主成分分析
 * 1. 将数据降维,只使用5%的维度数据
 * 2. K-Means聚类:分别将原始数据与主成分分析后的数据做聚类操作
 * */
static void c_3() throws Exception {

    AkSourceBatchOp source = new AkSourceBatchOp().setFilePath(DATA_DIR + SPARSE_TRAIN_FILE);

    source
        .link(
            new PcaTrainBatchOp()
                .setK(39)
                .setCalculationType(CalculationType.COV)
                .setVectorCol(VECTOR_COL_NAME)
                .lazyPrintModelInfo()
        )
        .link(
            new AkSinkBatchOp()
                .setFilePath(DATA_DIR + PCA_MODEL_FILE)
                .setOverwriteSink(true)
        );
    BatchOperator.execute();

    BatchOperator <?> pca_result = new PcaPredictBatchOp()
        .setVectorCol(VECTOR_COL_NAME)
        .setPredictionCol(VECTOR_COL_NAME)
        .linkFrom(
            new AkSourceBatchOp().setFilePath(DATA_DIR + PCA_MODEL_FILE),
            source
        );

    Stopwatch sw = new Stopwatch();

    KMeans kmeans = new KMeans()
        .setK(10)
        .setVectorCol(VECTOR_COL_NAME)
        .setPredictionCol(PREDICTION_COL_NAME);

    sw.reset();
    sw.start();
    kmeans
        .fit(source)
        .transform(source)
        .link(
            new EvalClusterBatchOp()
                .setVectorCol(VECTOR_COL_NAME)
                .setPredictionCol(PREDICTION_COL_NAME)
                .setLabelCol(LABEL_COL_NAME)
                .lazyPrintMetrics("KMeans")
        );
    BatchOperator.execute();
    sw.stop();
    System.out.println(sw.getElapsedTimeSpan());

    sw.reset();
    sw.start();
    kmeans
        .fit(pca_result)
        .transform(pca_result)
        .link(
            new EvalClusterBatchOp()
                .setVectorCol(VECTOR_COL_NAME)
                .setPredictionCol(PREDICTION_COL_NAME)
                .setLabelCol(LABEL_COL_NAME)
                .lazyPrintMetrics("KMeans + PCA")
        );
    BatchOperator.execute();
    sw.stop();
    System.out.println(sw.getElapsedTimeSpan());

}

最后

感谢你们的阅读和喜欢,我收藏了很多技术干货,可以共享给喜欢我文章的朋友们,如果你肯花时间沉下心去学习,它们一定能帮到你。

因为这个行业不同于其他行业,知识体系实在是过于庞大,知识更新也非常快。作为一个普通人,无法全部学完,所以我们在提升技术的时候,首先需要明确一个目标,然后制定好完整的计划,同时找到好的学习方法,这样才能更快的提升自己。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

五、面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下。
在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/869836.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于opencv[python]的人脸检测

1 图片爬虫 这里的代码转载自&#xff1a;http://t.csdnimg.cn/T4R4F # 获取图片数据 import os.path import fake_useragent import requests from lxml import etree# UA伪装 head {"User-Agent": fake_useragent.UserAgent().random}pic_name 0 def request_pic…

idea springBoot启动时覆盖apollo配置中心的参数

vm options -Dorder.stat.corn“0/1 * * * * ?” 只有vm options, -D参数才能覆盖apollo参数 program arguments –key01val01 --key02val02 environment varibales envFAT;key02val02;key03val03

BGP选路之Preferred value

原理概述 当一台BGP路由器中存在多条去往同一目标网络的BGP路由时&#xff0c;BGP协议会对这些BGP路由的属性进行比较&#xff0c;以确定去往该目标网络的最优BGP路由&#xff0c;然后将该最优BGP路由与去往同一目标网络的其他协议路由进行比较&#xff0c;从而决定是否将该最优…

在 VM 虚拟机中安装 openEuler + 桌面

在 VM 虚拟机中安装 openEuler 1 介绍2 步骤语言Root 账户安装位置网络和主机名自动检索到【推荐】手动配置网络 软件选择安装完成登录测试网络curl ip / ping ipip link show / ip a如网络不通&#xff0c;可检查网卡状态和dns配置 安装命令设置以图形界面的方式启动【dde】第…

【屏显MCU】多媒体接口总结

本文主要介绍【屏显MCU】的基本概念&#xff0c;用于开发过程中的理解 以下是图层叠加示例 【屏显MCU】多媒体接口总结 0. 个人简介 && 授权须知1. 三大引擎1.1 【显示引擎】Display Engine1.1.1 【UI】 图层的概念1.1.2 【Video】 图层的概念1.1.3 图层的 Blending 的…

Linux——管理本地用户和组(详细介绍了Linux中用户和组的概念及用法)

目录 一、用户和组概念 &#xff08;一&#xff09;、用户的概念 &#xff08;二&#xff09;、组的概念 补充组 主要组 二、获取超级用户访问权限 &#xff08;一&#xff09;、su 命令和su -命令 &#xff08; 二&#xff09;、sudo命令 三、管理本地用户账户 &…

【OpenCV C++20 学习笔记】图片处理基础

OpenCV C20 图片处理基础 VS 2022 C20 标准库导入的问题头文件包含以及命名空间声明main函数读取图片读取检查显式图片写入图片 完整代码bug VS 2022 C20 标准库导入的问题 VS还没有完全兼容C20。C20的import语句不一定能正确导入标准库&#xff0c;所以必须要新建一个头文件专…

实时同步:使用 Canal 和 Kafka 解决 MySQL 与缓存的数据一致性问题

目录 1. 准备工作 2. 将需要缓存的数据存储 Redis 3. 监听 canal 存储在 Kafka Topic 中数据 1. 准备工作 1. 开启并配置MySQL的 BinLog&#xff08;MySQL 8.0 默认开启&#xff09; 修改配置&#xff1a;C:\ProgramData\MySQL\MySQL Server 8.0\my.ini log-bin"HELO…

Github个人网站搭建详细教程【Github+Jekyll模板】

文章目录 前言一、介绍1 Github Pages是什么2 静态网站生成工具3 Jekyll简介Jekyll 和 GitHub 的关系 4 Mac系统Jekyll的安装及使用安装Jekyll的简单使用 二、快速搭建第一个Github Pages网站三、静态网站模板——Chirpy1 个人定制 四、WordPress迁移到Github参考资料 前言 23…

机器学习笔记——决策树

定义 决策树是一种可以用来解决回归和分类的问题的算法 决策树使用树形结构&#xff0c;通过叶子节点上的条件层层推理&#xff0c;得到最终的结果 例如&#xff1a;通过上面的简单决策&#xff0c;我们可以通过形状这一条件决策出水果属于哪一类。 决策树的学习结果和取什么规…

在Windows安装、部署Tomcat的方法

本文介绍在Windows操作系统中&#xff0c;下载、配置Tomcat的方法。 Tomcat是一个开源的Servlet容器&#xff0c;由Apache软件基金会的Jakarta项目开发和维护&#xff1b;其提供了执行Servlet和Java Server Pages&#xff08;JSP&#xff09;所需的所有功能。其中&#xff0c;S…

ROS配置并同时驱动多个UVC相机(含功能包)

配置并同时驱动多个UVC相机&#xff0c;并将数据保存为ROS话题形式的bag文件。 ROS可以同时驱动多个UVC相机。要实现这个目标并将数据保存成ROS话题的形式&#xff0c;再保存为bag文件&#xff0c;可以按照以下步骤操作&#xff1a; 1. 安装必要的包 sudo apt-get update sud…

环境搭建-Docker搭建ClickHouse

Docker搭建ClickHouse 一、前言二、ClickHouse安装2.1 拉取镜像运行ClickHouse服务 三、测试安装3.1 进入clickhouse容器3.2 命令补充说明 四、测试连接五、设置CK的用户名密码 一、前言 本文使用的Docker使用Windows搭建&#xff0c;Linux版本的搭建方式一样。 Windows系统搭…

【笔记:3D航路规划算法】二、RRT*

目录 RRT*于RRT的不同之处1、路径优化&#xff1a;2、成本计算&#xff1a;3、重连线步骤&#xff1a; 图解1、初始化2、路径搜索3、效果展示 总结 3D路径规划是在三维空间中寻找从起点到终点的最短或最优路径的一种技术。它广泛应用于无人机导航、机器人运动规划、虚拟现实等领…

前台文本直接取数据库值doFieldSQL插入SQL

实现功能&#xff1a;根据选择的车间主任带出角色。 实现步骤&#xff1a;OA的“字段联动”功能下拉选项带不出表“hrmrolemembers”&#xff0c;所以采用此方法。 doFieldSQL("select roleid from HrmResource as a inner join hrmrolemembers as b on a.id b.resource…

c++笔记2

目录 2.2 栈底&#xff08;bottom&#xff09; } 大数乘大数 节点&#xff1a;包含一个数据元素及若干指向子树分支的信息 。 节点的度&#xff1a;一个节点拥有子树的数目称为节点的度 。 叶子节点&#xff1a;也称为终端节点&#xff0c;没有子树的节点或者度为零的节点…

环信+亚马逊云科技服务:助力出海AI社交应用扬帆起航

随着大模型技术的飞速发展&#xff0c;AI智能体的社交体验得到了显著提升&#xff0c;AI社交类应用在全球范围内持续火热。尤其是年轻一代对新技术和新体验的热情&#xff0c;使得AI社交产品在海外市场迅速崛起。作为领先的即时通讯解决方案提供商&#xff0c;环信与亚马逊云科…

【Python】sqlite加密库pysqlcipher3编译安装步骤

目录 说明准备工作openssl编译sqlitetcl setup.py修改quote_argumentopenssl路径 安装加密示例代码测试附录参考 说明 pysqlcipher3是针对Python 3使用的pysqlcipher的一个分支&#xff0c; 尽管仍然维护对Python 2的支持。它仍然处于测试阶段&#xff0c; 尽管这个库包含的最…

uniapp集成安卓原生录屏插件以及使用

概述 我们知道UniApp的出现简化了开发者的工作流程&#xff0c;并减少了代码的重复编写。开发者可以使用一套代码编译到iOS、Android、以及各种小程序的应用&#xff0c;节省了人力和时间成本&#xff0c;但是涉及到与系统交互的时候&#xff0c;比如录屏、录音、录像、文件操…

实现Nginx的反向代理和负载均衡

一、反向代理和负载均衡简介 1.1、反向代理 反向代理(reverse proxy)指:以代理服务器来接受Internet上的连接请求,然后将请求转发给内部网络上的服务器,并将从服务器上得到的结果返回给Internet上请求连接的客户端。此时代理服务器对外就表现为一个反向代理服务器。 反向代…