Java软件设计模式-单例设计模式

目录

1.软件设计模式的概念

2.设计模式分类

2.1 创建型模式

2.2 结构型模式

2.3 行为型模式

3.单例设计模式

3.1 单例模式的结构

 3.2 单例模式的实现

 3.2.1 饿汉式-方式1(静态变量方式)

 3.2.2 懒汉式-方式1(线程不安全)

3.2.3 懒汉式-方式2(线程安全)

3.3 单例模式的优点和缺点


1.软件设计模式的概念

软件设计模式(Software Design Pattern),又称设计模式,是一套被“反复使用”、“多数人知晓的”、“代码设计经验的总结”。它描述了在软件设计过程中的一些不断重复发生的问题,以及该问题的解决方案。也就是说,它是解决特定问题的一系列套路,是“前辈们的代码设计经验的总结”,具有一定的普遍性,可以反复使用。

2.设计模式分类

2.1 创建型模式

用于描述“怎样创建对象”,它主要特点是“将对象的创建与使用分离”。GoF书中提供了单例、原型、工厂方法、抽象工厂、建造者五种创建型模式。

2.2 结构型模式

用于描述如何将类或对象按某种布局组成更大的结构,GoF书中提供了代理、适配器、桥接、装饰、外观、享元、组合等 7 种结构型模式。

2.3 行为型模式

用于描述类或对象之间怎样相互协作共同完成单个对象无法单独完成的任务,以及怎样分配职责。GoF(四人组)书中提供了模板方法、策略、命令、职责链、状态、观察者、中介者、迭代器、访问者、备忘录、解释器11 种行为型模式。

3.单例设计模式

  • 单例模式(Singleton Pattern)是 Java 中最简单的设计模式之一。这种类型的设计模式属于创建型模式,它提供了一种创建对象的最佳方式。
  • 这种模式涉及到一个单一的类,该类负责创建自己的对象,同时确保只有单个对象被创建。这个类提供了一种访问其唯一的对象的方式,可以直接访问,不需要实例化该类的对象。

3.1 单例模式的结构

单例模式的主要有以下角色:

  • 单例类。只能创建一个实例的类.
  • 访问类。使用单例类

 3.2 单例模式的实现

单例模式的设计分为俩种:

  • 饿汉式:类加载就会导致该单实例对象被创建。
  • 懒汉式:类加载不会导致该单实例对象被创建,而是首次使用该对象时才会被创建。

 3.2.1 饿汉式-方式1(静态变量方式)

/**
 * 饿汉式
 *      静态变量创建类的对象
 */
public class Singleton {
    //私有构造方法
    private Singleton() {}

    //在成员位置创建该类的对象
    private static Singleton instance = new Singleton();

    //对外提供静态方法获取该对象
    public static Singleton getInstance() {
        return instance;
    }
}

说明:

该方式在成员位置声明Singleton类型的静态变量,并创建Singleton类的对象instance。instance对象是随着类的加载而创建的。如果该对象足够大的话,而一直没有使用就会造成内存的浪费。

 3.2.2 懒汉式-方式1(线程不安全)

/**
 * 懒汉式
 *  线程不安全
 */
public class Singleton {
    //私有构造方法
    private Singleton() {}

    //在成员位置创建该类的对象
    private static Singleton instance;

    //对外提供静态方法获取该对象
    public static Singleton getInstance() {

        if(instance == null) {
            instance = new Singleton();
        }
        return instance;
    }
}

说明:

从上面代码我们可以看出该方式在成员位置声明Singleton类型的静态变量,并没有进行对象的赋值操作,那么什么时候赋值的呢?当调用getInstance()方法获取Singleton类的对象的时候才创建Singleton类的对象,这样就实现了懒加载的效果。但是,如果是多线程环境,会出现线程安全问题。

3.2.3 懒汉式-方式2(线程安全)

/**
 * 懒汉式
 *  线程安全
 */
public class Singleton {
    //私有构造方法
    private Singleton() {}

    //在成员位置创建该类的对象
    private static Singleton instance;

    //对外提供静态方法获取该对象
    public static synchronized Singleton getInstance() {

        if(instance == null) {
            instance = new Singleton();
        }
        return instance;
    }
}

说明:

该方式也实现了懒加载效果,同时又解决了线程安全问题。但是在getInstance()方法上添加了synchronized关键字,导致该方法的执行效果特别低。从上面代码我们可以看出,其实就是在初始化instance的时候才会出现线程安全问题,一旦初始化完成就不存在了。

3.2.4 懒汉式-方式3(双重检查锁)

再来讨论一下懒汉模式中加锁的问题,对于 getInstance() 方法来说,绝大部分的操作都是读操作,读操作是线程安全的,所以我们没必让每个线程必须持有锁才能调用该方法,我们需要调整加锁的时机。由此也产生了一种新的实现模式:双重检查锁模式。

/**
 * 双重检查方式
 */
public class Singleton { 

    //私有构造方法
    private Singleton() {}

    private static Singleton instance;

   //对外提供静态方法获取该对象
    public static Singleton getInstance() {
		//第一次判断,如果instance不为null,不进入抢锁阶段,直接返回实例
        if(instance == null) {
            synchronized (Singleton.class) {
                //抢到锁之后再次判断是否为null
                if(instance == null) {
                    instance = new Singleton();
                }
            }
        }
        return instance;
    }
}

说明:

双重检查锁模式是一种非常好的单例实现模式,解决了单例、性能、线程安全问题,上面的双重检测锁模式看上去完美无缺,其实是存在问题,在多线程的情况下,可能会出现空指针问题,出现问题的原因是JVM在实例化对象的时候会进行优化和指令重排序操作。

要解决双重检查锁模式带来空指针异常的问题,只需要使用 volatile 关键字, volatile 关键字可以保证可见性和有序性。

/**
 * 双重检查方式
 */
public class Singleton {

    //私有构造方法
    private Singleton() {}

    private static volatile Singleton instance;

   //对外提供静态方法获取该对象
    public static Singleton getInstance() {
		//第一次判断,如果instance不为null,不进入抢锁阶段,直接返回实际
        if(instance == null) {
            synchronized (Singleton.class) {
                //抢到锁之后再次判断是否为空
                if(instance == null) {
                    instance = new Singleton();
                }
            }
        }
        return instance;
    }
}

小结:

添加 volatile 关键字之后的双重检查锁模式是一种比较好的单例实现模式,能够保证在多线程的情况下线程安全也不会有性能问题。

还有,这里的private static volatile Singleton singleton = null;中的volatile也必不可少,volatile关键字可以防止jvm指令重排优化。

在java内存模型中,volatile 关键字作用可以是保证可见性或者禁止指令重排。这里是因为 singleton = new Singleton() ,它并非是一个原子操作,事实上,在 JVM 中上述语句至少做了以下这 3 件事:

  • 第一步是给 singleton 分配内存空间;

  • 第二步开始调用 Singleton 的构造函数等,来初始化 singleton;

  • 第三步,将 singleton 对象指向分配的内存空间(执行完这步 singleton 就不是 null 了)。

这里需要留意一下 1-2-3 的顺序,因为存在指令重排序的优化,也就是说第 2 步和第 3 步的顺序是不能保证的,最终的执行顺序,可能是 1-2-3,也有可能是 1-3-2。

如果是 1-3-2,那么在第 3 步执行完以后,singleton 就不是 null 了,可是这时第 2 步并没有执行,singleton 对象未完成初始化,它的属性的值可能不是我们所预期的值。假设此时线程 2 进入 getInstance 方法,由于 singleton 已经不是 null 了,所以会通过第一重检查并直接返回,但其实这时的 singleton 并没有完成初始化,所以使用这个实例的时候会报错,详细流程如下图所示:

 这里还说一下volatile关键字的第二个作用,保证变量在多线程运行时的可见性:

public class Test01 {
    public static void main(String[] args) throws Exception{
        T t=new T();
        t.start();

        Thread.sleep(2000);
        System.out.println("主线程设置t线程的参数来止损失");
        t.setFlag(false);
    }
}
class T extends Thread{
    private volatile boolean flag=true;

    public void setFlag(boolean flag) {
        this.flag = flag;
    }

    @Override
    public void run() {
        System.out.println("进入run方法");
        while(flag){

        }
    }
}

 在 JDK1.2 之前,Java的内存模型实现总是从主存(即共享内存)读取变量,是不需要进行特别的注意的。而在当前 的 Java 内存模型下,线程可以把变量保存本地内存(比如机器的寄存器)中,而不是直接在主存中进行读写。这就 可能造成一个线程在主存中修改了一个变量的值,而另外一个线程还继续使用它在寄存器中的变量值的拷贝,造成数 据的不一致。 要解决这个问题,就需要把变量声明为 volatile,这就指示 JVM,这个变量是不稳定的,每次使用它都到主存中进行 读取。

3.3 单例模式的优点和缺点

优点:单例类只有一个实例,节省了内存资源,对于一些需要频繁创建销毁的对象,使用单例模式可以提高系统性能;单例模式可以在系统设置全局的访问点,优化和共享数据,例如前面说的Web应用的页面计数器就可以用单例模式实现计数值的保存。

缺点:单例模式一般没有接口,扩展的话除了修改代码基本上没有其他途径。

下一篇:软件设计模式-工厂模式-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/799819.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

数据结构之初始二叉树(2)

找往期文章包括但不限于本期文章中不懂的知识点: 个人主页:我要学编程(ಥ_ಥ)-CSDN博客 所属专栏:数据结构(Java版) 二叉树的前置知识(概念、性质、、遍历) 通过上篇文章的学习,我们…

STM32第十八课:SPIFlash

目录 需求一、SPI概要二、SPI配置1.开时钟2.配置IO3.配置&使能SPI 三、FLash操作函数1.SPI发送数据2.FLASH写使能3.FLASH等待操作完成4.FLASH页写操作5.FLASH读操作6.FLASH扇区擦除 四、需求实现 需求 通过SPI控制FLash进行数据的保存和删除。 一、SPI概要 在我们使用UA…

oracle控制文件详解以及新增控制文件

文章目录 oracle控制文件1、 控制文件包含的主要信息如下:2、查看目前系统的控制文件信息,主要是查看相关的字典视图 oracle新增控制文件 oracle控制文件 控制文件是一个很小的二进制文件(10MB左右),含有数据库结构信息,包括数据…

(leetcode学习)15. 三数之和

给你一个整数数组 nums ,判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i ! j、i ! k 且 j ! k ,同时还满足 nums[i] nums[j] nums[k] 0 。请 你返回所有和为 0 且不重复的三元组。 注意:答案中不可以包含重复的三元组。 示例 1&a…

浅谈全量微调和PEFT高效微调(LoRA)

浅谈全量微调和LoRA微调 全量微调Full Fine-Tuning 全量微调是指在预训练的大型模型基础上调整所有层和参数,‌使其适应特定任务的过程。‌这一过程使用较小的学习率和特定任务的数据进行,‌可以充分利用预训练模型的通用特征 高效微调 高效微调&…

PyQt5图形界面--基础笔记

from PyQt5.QtWidgets import QApplication, QWidget, QPushButton, QToolTip, QLabel, QLineEdit from PyQt5.QtGui import QIcon, QFont, QPixmap import sys https://www.bitbug.net/ 将图片转换为ico格式, 用来更改打包的文件图标 -F 只产生exe文件, 其他临时文件不产生 -…

深度学习论文: XFeat: Accelerated Features for Lightweight Image Matching

深度学习论文: XFeat: Accelerated Features for Lightweight Image Matching XFeat: Accelerated Features for Lightweight Image Matching PDF:https://arxiv.org/pdf/2404.19174 PyTorch: https://github.com/shanglianlm0525/PyTorch-Networks 1 概述 本文创新性地推出了…

kubernetes——Istio(三)

一、安全 将单一应用程序分解为微服务可提供各种好处,包括更好的灵活性、 可伸缩性以及服务复用的能力。但是,微服务也有特殊的安全需求: 为了抵御中间人攻击,需要流量加密。为了提供灵活的服务访问控制,需要双向 TL…

大语言模型可以处理图问题吗?

为了探讨大型语言模型(LLM)在处理自然语言描述的图结构问题上的能力,提出了NLGraph基准测试集,包含29,370个涉及不同复杂度的图推理任务。这些任务从简单的连通性和最短路径到复杂的最大流和图神经网络模拟。评估结果显示&#xf…

【C语言初阶】探索编程基础:深入理解分支与循环语句的奥秘

📝个人主页🌹:Eternity._ ⏩收录专栏⏪:C语言 “ 登神长阶 ” 🤡往期回顾🤡:C语言入门 🌹🌹期待您的关注 🌹🌹 ❀分支与循环语句 📒1.…

uniapp-day2

目录 1.在uniapp中显示视图有三种方式 2.scss和less的区别? 1. 语法差异 2. 变量和常量 3. 嵌套规则 4. 混合(Mixins) 5. 继承和扩展 6. 注释 7. 导入其他文件 8. 生态系统和社区支持 9. 其他特性 3.新建页面:要在page…

Transformer模型:scaled self-attention mask实现

前言 视频链接:20、Transformer模型Decoder原理精讲及其PyTorch逐行实现_哔哩哔哩_bilibili 文章链接:Transformer模型:WordEmbedding实现-CSDN博客 Transformer模型:Postion Embedding实现-CSDN博客 Transformer模型&#xff…

一文读懂近场通信NFC

近场通信(Near Field Communication,简称NFC),NFC是在非接触式射频识别(RFID)技术的基础上,结合无线互连技术研发而成. 是一种新兴的技术,使用了NFC技术的设备(例如移动电话)可以在彼…

基于vite的vue脚手架工具整合:ts、jsx、eslint、prettier、stylelint、tailwind...

为了帮助vue新手更高效的学习vue3的基础知识、组件开发以及项目方案整合,小卷给大家整理了一个10分钟搞定《基于vite的vue脚手架工具整合》的教程。所有工具都是目前最新的版本,实践和调试过,没有一行多余的配置。

数据库基本查询(表的增删查改)

一、增加 1、添加信息 insert 语法 insert into table_name (列名) values (列数据1,列数据2,列数据3...) 若插入时主键或唯一键冲突就无法插入。 但如果我们就是要修改一列信息也可以用insert insert into table_name (列名) values (列数据1&am…

【JVM基础03】——组成-详细介绍下Java中的堆

目录 1- 引言:堆1-1 堆是什么?(What)1-2 为什么用堆?堆的作用 (Why) 2- ⭐核心:堆的原理(How)2-1 堆的划分2-2 Java 7 与 Java 8 的堆区别 3- 小结:3-1 详细介绍下Java的堆?3-2 JVM …

FPGA:基于复旦微FMQL10S400 /FMQL20S400 国产化核心板

复旦微电子是国内集成电路设计行业的领军企业之一,早在2000年就在香港创业板上市,成为行业内首家上市公司。公司的RFID芯片、智能卡芯片、EEPROM、智能电表MCU等多种产品在市场上的占有率位居行业前列。 今天介绍的是搭载复旦微 FMQL10S400/FMQL20S400的…

Python从0到100(三十九):数据提取之正则(文末免费送书)

前言: 零基础学Python:Python从0到100最新最全教程。 想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Pyth…

前端框架学习之 搭建vue2的环境 书写案例并分析

目录 搭建vue的环境 Hello小案例 分析案例 搭建vue的环境 官方指南假设你已经了解关于HTML CSS 和JavaScript的中级知识 如果你刚开始学习前端开发 将框架作为你的第一步可能不是最好的主意 掌握好基础知识再来吧 之前有其他框架的使用经验会有帮助 但这不是必需的 最…

基于双向长短时记忆神经网络(Bi-LSTM)的数据回归预测

代码原理 1.循环神经网络 循环神经网络(Recurrent Neural Network, RNN) 是深度学习领域一类具有内部自连接的神经网络能够学习复杂的矢量到矢量的映射。一个简单的循环神经网络结构,其结构包含三部分,分别为输入层、隐藏层和输出层,如图1所…