大模型应用中什么是SFT(监督微调)?

SFT

大模型应用中什么是SFT(监督微调)?

一、SFT的基本概念

监督微调(Supervised Fine-Tuning, SFT)是对已经预训练的模型进行特定任务的训练,以提高其在该任务上的表现。预训练模型通常在大量通用数据上进行训练,学到广泛的语言知识和特征。在SFT过程中,利用特定任务的数据,对模型进行进一步调整,使其更适合该任务。

二、SFT的原理

SFT的过程可以分为以下几个步骤:

  1. 预训练模型

    • 在大规模通用数据集(例如维基百科、书籍语料库等)上进行预训练。
    • 通过无监督学习,模型学习到丰富的语言表示(如词语之间的关系、句子结构等)。
    • 预训练阶段使用的目标函数通常是语言模型任务的损失函数,如语言建模损失:
      L pretrain ( θ ) = − 1 N ∑ i = 1 N log ⁡ P ( x i ∣ x < i ; θ ) L_{\text{pretrain}}(\theta) = -\frac{1}{N} \sum_{i=1}^{N} \log P(x_i | x_{<i}; \theta) Lpretrain(θ)=N1i=1NlogP(xix<i;θ)
      其中, x i x_i xi 是句子中的第 i i i 个词, x < i x_{<i} x<i 是它之前的所有词, θ \theta θ 是模型的参数。
  2. 准备任务特定数据集

    • 选择特定任务的数据集,例如情感分析(包含正面和负面标签)、文本分类(不同类别的标签)等。
    • 对数据进行预处理和标注。
  3. 监督微调

    • 使用任务特定的数据集对预训练模型进行微调。
    • 在微调过程中,模型的参数会根据特定任务的数据进行更新,以优化模型在该任务上的表现。
    • 微调阶段使用的目标函数通常是监督学习任务的损失函数,如交叉熵损失:
      L fine-tune ( θ ) = − 1 N ∑ i = 1 N ∑ j = 1 C y i j log ⁡ P ( y j ∣ x i ; θ ) L_{\text{fine-tune}}(\theta) = -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{C} y_{ij} \log P(y_j | x_i; \theta) Lfine-tune(θ)=N1i=1Nj=1CyijlogP(yjxi;θ)
      其中, y i j y_{ij} yij 是样本 i i i 在类别 j j j 上的真实标签, P ( y j ∣ x i ; θ ) P(y_j | x_i; \theta) P(yjxi;θ) 是模型对样本 i i i 预测为类别 j j j 的概率。
三、SFT的优势
  1. 提高模型性能:通过在特定任务的数据上进行微调,模型可以显著提高在该任务上的表现。
  2. 减少标注数据需求:由于预训练模型已经在大量数据上进行过训练,SFT通常只需要较少的标注数据即可达到良好的效果。
  3. 灵活性:SFT可以应用于各种任务,如文本分类、情感分析、机器翻译等。
四、SFT在GPT中的应用

GPT(Generative Pre-trained Transformer)是一种预训练语言模型,通过SFT,可以将其应用于各种特定任务。以下是一些具体的应用场景:

  1. 文本分类:使用GPT模型进行情感分析或主题分类。
  2. 问答系统:通过微调GPT模型,使其能够回答特定领域的问题。
  3. 对话生成:微调GPT模型,使其生成更符合特定风格或主题的对话。
五、SFT的代码示例

下面是使用Hugging Face的Transformers库对GPT模型进行监督微调的示例代码:

import torch
from transformers import GPT2Tokenizer, GPT2ForSequenceClassification, Trainer, TrainingArguments
from datasets import load_dataset

# 加载预训练的GPT-2模型和分词器
model_name = "gpt2"
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
model = GPT2ForSequenceClassification.from_pretrained(model_name, num_labels=2)

# 加载数据集
dataset = load_dataset('imdb')
train_dataset = dataset['train'].map(lambda e: tokenizer(e['text'], truncation=True, padding='max_length'), batched=True)
train_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'label'])

# 定义训练参数
training_args = TrainingArguments(
    output_dir='./results',
    num_train_epochs=3,
    per_device_train_batch_size=8,
    per_device_eval_batch_size=8,
    warmup_steps=500,
    weight_decay=0.01,
    logging_dir='./logs',
)

# 定义Trainer
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=train_dataset,
)

# 进行监督微调
trainer.train()
六、总结

监督微调(SFT)通过使用特定任务的数据集对预训练模型进行进一步训练,从而优化模型在该任务上的性能。这种方法在自然语言处理领域有广泛的应用,如文本分类、问答系统和对话生成等。通过结合预训练和微调,SFT能够在较少的数据和计算资源下实现高效的模型性能提升。

希望这篇文章能帮助您更好地理解监督微调(SFT)的概念和应用。如果您有任何疑问或需要进一步的帮助,请随时在评论区留言!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/789341.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

算法:字符串相关

目录 题目一&#xff1a;最长公共前缀 题目二&#xff1a;最长回文子串 题目三&#xff1a;二进制求和 题目四&#xff1a;字符串相乘 题目一&#xff1a;最长公共前缀 编写一个函数来查找字符串数组中的最长公共前缀 如果不存在公共前缀&#xff0c;返回空字符串 "…

mysql判断时间段是否重合

mysql判断时间段是否重合 SELECT CASE WHEN t1.start_time < t2.end_time AND t1.end_time > t2.start_time THEN ‘重合’ ELSE ‘不重合’ END AS result FROM table_name t1, table_name t2 WHERE t1.id <> t2.id;

产品经理-交互设计动手实践(11)

业内有很多画交互的工具&#xff0c;这里不过多介绍&#xff0c;互联网公司最常用的工具是Axure,墨刀,蓝湖,小瀑 它是一个专业的快速原型设计工具&#xff0c;使用它能够快速创建线框图、流程图、原型和规格说明文档。 它能快速、高效地创建原型&#xff0c;同时支持多人协作设…

不想成为失业大军,就要学习六西格玛?

最近&#xff0c;优思学院收到一封邮件&#xff0c;这封邮件的发送者是一位完成了我们六西格玛绿带课程的学生。 他的公司裡有20%的工程师被裁员&#xff0c;但值得注意的是&#xff0c;留下来的工程师中有70%人竟然都持有六西格玛绿带或黑带证书。 他的公司不仅希望利用这些…

科普文:深入理解Mybatis

概叙 (1) JDBC JDBC(Java Data Base Connection,java数据库连接)是一种用于执行SQL语句的Java API,可以为多种关系数据库提供统一访问,它由一组用Java语言编写的类和接口组成.JDBC提供了一种基准,据此可以构建更高级的工具和接口,使数据库开发人员能够编写数据库应用程序。 优点…

React文档内网搭建

React文档内网搭建流程 官网地址 官网中文地址 通过官网我们可以找到React的github存储库 ReactGitHub 在介绍中可以找到对应的文档存储库 React文档存储库 此存储库是英文文档地址,我们通过中文文档地址以及该存储库作者目录下找到中文存储库 React文档中文存储库 下载…

JavaSE语法 | 初识Java!!!

初识Java 一、Java开发环境二、初步认识Java的main方法2.1 main方法的实现2.2 运行Java程序 三、注释四、标识符五、关键字 一、Java开发环境 IDEA版本&#xff1a;IntelliJ IDEA Community Edition 2022.3.3 JDK17 Windows 11 二、初步认识Java的main方法 2.1 main方法的实…

C语言入门-1.数据的类型、数据的输入输出

数据类型常量变量&#xff08;整型-浮点-字符&#xff09; 数据类型 基本类型 整型int 符号常量 定义一个整形变量时要使用关键字int #include <stdio.h> //符号常量练习 #define PI 3 2 int main() {int i PI * 2;printf("i%d\n",i);return 0; } //7 …

解密 AI 客服:LangChain+ChatGPT 打造智能客服新时代

你需要了解 ChatGPT ChatGPT 是 OpenAI 开发的一种基于人工智能技术的自然语言处理模型。它可以通过对大量文本数据进行训练&#xff0c;自动生成高质量的回答和对话。ChatGPT 具有高效、准确、自然的特点&#xff0c;可以帮助人们更加高效地处理信息和交流。 ChatGPT 有很多…

QT TCP多线程网络通信

学习目标&#xff1a; TCP网络通信编程 学习前置环境 运行环境:qt creator 4.12 QT TCP网络通信编程-CSDN博客 Qt 线程 QThread类详解-CSDN博客 学习内容 使用多线程技术实现服务端计数器 核心代码 客户端 客户端&#xff1a;负责连接服务端&#xff0c;每次连接次数1。…

启动tomcat时提示The JRE_HOME environment variable is not defined correctly

我的情况是在已经安装过jdk后&#xff0c;启动tomcat时出现以下问题 原因是环境变量配置不正确导致的 首先确认一下jre的实际安装路径 然后修改环境变量配置文件 vim /etc/profile 添加以下内容&#xff0c;JRE_HOME为实际jre的路径 然后保存退出 让文件生效一下 source…

Docker-搭建部署Jenkins(保姆篇)

文章目录 Jenkins部署拉取镜像启动容器查看初始密码关闭CSRF Jenkins页面使用解决插件下载缓慢访问jenkins页面推荐插件安装创建一个管理员账号实例配置页面展示 更多相关内容可查看 Jenkins部署 拉取镜像 如果想拉取对应版本请指明版本号 docker pull jenkins/jenkins:lts-…

数据分析入门指南:表结构数据(三)

在数字化转型的浪潮中&#xff0c;表结构数据作为企业决策支持系统的核心要素&#xff0c;其重要性日益凸显。本文深入剖析了表结构数据的本质特征、高效处理策略&#xff0c;并探讨了其在现代商业智能环境中的广泛应用&#xff0c;旨在为数据分析师与决策者提供前沿洞察与实战…

电脑屏幕亮度怎么调?3个技巧,指尖轻松调控明亮度

你是否曾因为屏幕亮度的不合适而感到眼睛疲劳&#xff1f;是否曾在深夜加班时&#xff0c;被电脑屏幕刺眼的亮度搅得心烦意乱&#xff1f;电脑屏幕亮度怎么调呢&#xff1f;本文将为你介绍3个简便易行的技巧&#xff0c;让指尖轻松掌控屏幕亮度&#xff0c;享受舒适的观看体验。…

前端vue 实现取色板 的选择

大概就是这样的 一般的web端框架 都有自带的 的 比如 ant-design t-design 等 前端框架 都是带有这个的 如果遇到没有的我们可以自己尝试开发一下 简单 的 肯定比不上人家的 但是能用 能看 说的过去 我直接上代码了 其实这个取色板 就是一个input type 是color 的input …

Vue组件通信props和$emit用法

父传子&#xff0c;通过props 子传父&#xff0c;通过$emit App.vue <template><div class"app" style"border: 3px solid #000; margin: 10px">我是APP组件<!-- 1.给组件标签&#xff0c;添加属性方式 赋值 --><!-- 添加属性传值 …

untiy 在菜单栏添加自定义按钮 点击按钮弹出一个Unity窗口,并在窗口里添加属性

using System.Collections.Generic; using UnityEditor; using UnityEngine; using UnityEngine.Rendering.PostProcessing;public class AutoGenerateWindow : EditorWindow //这是定义一个窗口 {public string subjecttName "科目名字";//科目的名字public GameOb…

补光灯LED照明 2.7V4.2V5V升60V80V100V升压恒流芯片IC-H6902B

H6902B升压恒流芯片IC确实是一款为LED照明应用设计的稳定且可靠的解决方案。这款芯片具有以下几个显著特点&#xff1a; 高效率&#xff1a;效率高达95%以上&#xff0c;这意味着在驱动LED灯时&#xff0c;电源到LED的能量转换效率非常高&#xff0c;减少了能量损失&#xff0…

抖音本地生活服务商怎么申请?附详细教程!

随着本地生活的发展潜力和行业前景的不断展现&#xff0c;本地生活服务商也逐渐成为了一大热门职业。在此背景下&#xff0c;作为拥有约8亿日活用户的抖音成为了人们选择平台时的优先考虑对象&#xff0c;而以抖音本地生活服务商怎么申请为代表的相关问题也因此在多个创业者群中…

雪花算法改造失败导致ID重复问题分享

背景 雪花算法是分布式应用中应用比较多的 ID 生成算法&#xff0c;某项目中使用该算法生成ID&#xff0c;近期被反馈算法生成的 ID 存在重复的情况&#xff0c;排了一天&#xff0c;终于找到问题根源了。 本文将总结这个 Bug &#xff0c;顺便温故一下雪花算法及改造雪花算法…