大模型LLMs概述:利用大模型 (LLMs) 解决信息抽取任务

在这里插入图片描述

论文标题:Large Language Models for Generative Information Extraction: A Survey

论文链接:https://arxiv.org/pdf/2312.17617.pdf

论文主要探讨了大型语言模型(LLMs)在生成式信息抽取(IE)任务中的应用,并对这一领域的最新进展进行了全面系统的回顾。

摘要

信息抽取(IE)是自然语言处理(NLP)中的一个重要领域,它将文本转换为结构化知识。随着大型语言模型(如GPT-4和Llama)的出现,它们在文本理解和生成方面展现出了卓越的能力,使得跨领域和任务的泛化成为可能。因此,越来越多的研究开始利用LLMs的生成能力来解决IE任务,而不是从文本中提取结构化信息。这些方法在实际应用中更加实用,因为它们能够有效处理包含数百万实体的模式,而不会显著降低性能。

1. 引言

信息抽取(IE)是将文本转换为结构化知识的过程,对于知识图谱构建、知识推理和问答系统等下游任务至关重要。LLMs的出现极大地推动了NLP的发展,因为它们在文本理解和生成方面的能力非常出色。因此,研究者们对采用LLMs进行生成式IE方法的兴趣日益增长。

图片

2. 生成式IE的初步知识

在这部分,论文介绍了生成式IE的定义和目标,包括命名实体识别(NER)、关系抽取(RE)和事件抽取(EE)等子任务。这些任务被以生成式的方式制定,即使用一个提示(prompt)来增强LLMs对任务的理解,并生成相应的提取序列。

3. IE任务

在这一部分,论文详细介绍了信息抽取(IE)的三个主要子任务:命名实体识别(NER)、关系抽取(RE)和事件抽取(EE),并对每种任务的代表性模型和方法进行了概述。

图片

3.1 命名实体识别(NER)

命名实体识别是IE的一个关键组成部分,它涉及识别文本中的实体(如人名、地点、组织等)及其类型。论文讨论了几种不同的NER方法,包括基于规则的方法、统计方法和基于深度学习的方法。特别地,论文提到了使用大型语言模型(LLMs)进行NER的几种策略,例如通过添加额外的提示(prompts)来增强任务的可理解性。

图片

3.2 关系抽取(RE)

关系抽取在IE中也扮演着重要角色,它通常有不同的设置,如关系分类、关系三元组和关系严格。论文分类了RE的不同设置,并介绍了各种方法,包括基于规则的方法、机器学习方法和基于LLMs的方法。这些方法旨在识别和分类实体之间的关系。

图片

3.3 事件抽取(EE)

事件抽取涉及识别和分类文本中的事件触发词和类型,以及提取与事件相关的论元。论文讨论了事件检测和事件论元提取两个子任务,并介绍了一些基于LLMs的方法,这些方法在事件抽取任务上取得了显著的性能提升。

图片

3.4 通用信息抽取(UIE)

论文还探讨了通用信息抽取(UIE)框架,这些框架旨在同时处理多个IE子任务。这些框架通常采用自然语言(NL-LLMs)或代码语言(Code-LLMs)的形式。NL-LLMs通过自然语言提示来统一所有IE任务,而Code-LLMs则利用编程语言的特性来生成代码,以处理结构化预测任务。

图片

4. 学习范式

在这一部分,论文对使用LLMs进行IE的各种学习范式进行了分类,包括有监督微调、少样本学习、零样本学习和数据增强。

4.1 有监督微调(Supervised Fine-tuning)

有监督微调是将预训练的LLMs进一步训练在特定的IE任务上,使用标注数据来提高模型的性能。这种方法允许模型学习到数据中的具体结构模式,并能够更好地泛化到未见过的任务。论文中提到了几种微调策略,例如结构预训练,它通过在一系列任务无关的语料库上预训练模型来增强其结构理解能力。此外,还有目标蒸馏和任务聚焦指令调整,这些方法通过训练学生模型来实现广泛的应用,如命名实体识别(NER)。

4.2 少样本学习(Few-shot Learning)

少样本学习是指在只有少量标注示例的情况下进行模型训练。这种方法面临的挑战包括过拟合和难以捕捉复杂关系。然而,通过增加LLMs的参数规模,它们展现出了惊人的泛化能力,即使在少样本设置中也能取得优异的性能。论文中提到了几种创新方法,如翻译增强自然语言框架(Translation between Augmented Natural Languages framework)、文本到结构生成框架(text-to-structure generation framework)和协作领域前缀调整(Collaborative Domain-Prefix Tuning),这些方法在少样本微调中取得了最先进的性能。

4.3 零样本学习(Zero-shot Learning)

零样本学习是指在没有特定IE任务的训练示例的情况下进行预测。这种方法的主要挑战在于使模型能够有效地泛化到未见过的任务和领域,以及对LLMs的预训练范式进行对齐。由于LLMs嵌入了大量的知识,它们在零样本场景中展现出了惊人的能力。论文中讨论了如何通过引入创新的训练提示(如指令和指南)来实现零样本跨域泛化。此外,还提到了跨类型泛化,即模型能够处理不同类型的任务,例如将事件抽取任务转化为条件生成问题。

4.4 数据增强(Data Augmentation)

数据增强涉及使用LLMs生成有意义的多样化数据,以增强现有数据。这种方法可以分为三种策略:数据注释、知识检索和逆向生成。数据注释策略直接使用LLMs生成标注数据,知识检索策略从LLMs中检索相关信息,而逆向生成策略则根据结构化数据生成自然文本或问题。这些策略各有优势和局限性,例如数据注释可以直接满足任务要求,但LLMs的结构化生成能力仍需改进;知识检索可以提供关于实体和关系的额外信息,但可能会引入噪声;逆向生成与LLMs的问答范式相一致,但需要结构化数据,并且生成的对之间存在领域差距。

图片

5. 特定领域

论文还探讨了LLMs在特定领域(如多模态、科学、医学等)的应用,并评估了LLMs在IE任务上的性能。

6. 评估与分析

这部分介绍了一些研究,它们探索了LLMs在IE任务上的能力和性能,包括对多个IE子任务的全面分析。

7. 未来方向

最后,论文提出了未来研究的可能方向,包括开发更灵活的通用IE框架、探索在资源有限场景下的IE系统、优化IE的提示设计,以及在开放IE设置中进一步探索LLMs的潜力。

如何学习大模型

现在社会上大模型越来越普及了,已经有很多人都想往这里面扎,但是却找不到适合的方法去学习。

作为一名资深码农,初入大模型时也吃了很多亏,踩了无数坑。现在我想把我的经验和知识分享给你们,帮助你们学习AI大模型,能够解决你们学习中的困难。

我已将重要的AI大模型资料包括市面上AI大模型各大白皮书、AGI大模型系统学习路线、AI大模型视频教程、实战学习,等录播视频免费分享出来,需要的小伙伴可以扫取。

一、AGI大模型系统学习路线

很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,我下面分享的这个学习路线希望能够帮助到你们学习AI大模型。

在这里插入图片描述

二、AI大模型视频教程

在这里插入图片描述

三、AI大模型各大学习书籍

在这里插入图片描述

四、AI大模型各大场景实战案例

在这里插入图片描述

五、结束语

学习AI大模型是当前科技发展的趋势,它不仅能够为我们提供更多的机会和挑战,还能够让我们更好地理解和应用人工智能技术。通过学习AI大模型,我们可以深入了解深度学习、神经网络等核心概念,并将其应用于自然语言处理、计算机视觉、语音识别等领域。同时,掌握AI大模型还能够为我们的职业发展增添竞争力,成为未来技术领域的领导者。

再者,学习AI大模型也能为我们自己创造更多的价值,提供更多的岗位以及副业创收,让自己的生活更上一层楼。

因此,学习AI大模型是一项有前景且值得投入的时间和精力的重要选择。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/775924.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

知识库系统平台管理与优化

在之前做的关于FAQ知识库问答系统中,总结了相关踩坑内容,梳理如下,供大家参考。系统平台的管理与优化对于企业来说至关重要,它不仅关乎数据处理的效率,还直接影响到用户体验和业务成果。本文将从系统平台管理方式、系统…

World of Warcraft [CLASSIC] Talent Tree

World of Warcraft [CLASSIC] Talent Tree 天赋树模拟器 01)初始化整个页面,选择游戏职业,初始化3个天赋树 02)初始化天赋树结构,层次为N层 03)每层有4个技能,设置可显示,设置隐藏…

通用代码生成器模板体系,语句和语句组

通用代码生成器或者叫动词算子式通用目的代码生成器是一组使用Java编写的通用代码生成器。它们的原理基于动词算子和域对象的笛卡尔积。它们没有使用FreeMarker和或者Velocity等现成的文件式模板引擎。而是使用java语言开发了一套专门为动词算子式代码生成器使用的模板API。而其…

uniapp启动安卓模拟器mumu

mumu模拟器下载 ADB: android debug bridge , 安卓调试桥,是一个多功能的命令行工具,他使你能够与连接的安卓设备进行交互 # adb连接安卓模拟器 adb connect 127.0.0.1:port # 查看adb设备 adb deviceshubuilderx 有内置的adb&a…

使用 Git Hooks 防止敏感信息泄露

欢迎关注公众号:冬瓜白 在日常开发中,我们可能会不小心将敏感信息提交到 Git。为了防止这种情况,可以利用 Git Hooks 编写一个简单的脚本,当发现提交中包含敏感词时,给出提示。 以下是一个基于 pre-commit 钩子的示例…

【MindSpore学习打卡】应用实践-计算机视觉-深入解析 Vision Transformer(ViT):从原理到实践

在近年来的深度学习领域,Transformer模型凭借其在自然语言处理(NLP)中的卓越表现,迅速成为研究热点。尤其是基于自注意力(Self-Attention)机制的模型,更是推动了NLP的飞速发展。然而&#xff0c…

Git代码提交流程

1. 核心流程 2. 完成流程

LeetCode 196, 73, 105

目录 196. 删除重复的电子邮箱题目链接表要求知识点思路代码 73. 矩阵置零题目链接标签简单版思路代码 优化版思路代码 105. 从前序与中序遍历序列构造二叉树题目链接标签思路代码 196. 删除重复的电子邮箱 题目链接 196. 删除重复的电子邮箱 表 表Person的字段为id和email…

我遭遇的奥数难题(持续更新)

第一题 地上有四堆石子,石子数分别是1、9、15、31。如果每次从其中的三堆同时各取出1个,然后都放入第四堆中,那么,能否经过若干次操作,使得四堆石子的个数都相同?(如果能,请说明具体操作,不能…

【html】许多大型网页都会有一个自己的主题色

许多网站确实会选择一种或几种特定的颜色作为他们的主题色,这通常是为了建立品牌识别度和一致性。 主题色在网站设计中起着至关重要的作用,它们不仅影响网站的视觉效果,还能传达品牌的情感和价值观。选择适当的主题色可以增强用户的品牌记忆…

从传统到智能:工业园区消防管理开始华丽转身

一、工业园区的消防管理现状 然而,当我们审视当前工业园区的消防管理现状时,不难发现其中存在诸多不足。首先,消防信息的智能化程度低,仿佛一位年迈的守望者,力不从心,难以即时将现场的数据信息传达至指挥…

重定向与转发

转发参数不会自动包含在新的请求中。若要将参数传递给重定向地址,可以在服务器端显式地添加参数到重定向URL中。 在重定向URL中包含参数 import java.io.IOException; import javax.servlet.ServletException; import javax.servlet.annotation.WebServlet; impor…

TCP的pop网络模式

TCP的pop网络模式 1、tcp连接的状态有以下11种 CLOSED:关闭状态LISTEN:服务端状态,等待客户端发起连接请求SYN_SENT:客户端已发送同步连接请求,等待服务端相应SYN_RECEIVED:服务器收到客户端的SYN请请求&…

巨头们涌入的医疗大模型,何时迎来最好的商业时代?_google医疗大模型 医疗大模型

当下极为火爆的大模型,在医疗赛道同样炙手可热。谷歌刚刚发布了准确率达 91.1%、性能远超 GPT-4 系列的多模态医学大模型 Med-Gemini,国内市场亦很热闹。自 2023 年以来,百度、腾讯、京东等诸多大厂都相继加码医疗大模型领域,与医…

C++:Level3阶段测试

1、黑客小知识: (1)常用的黑客头文件有____和____。 (2)创建文件的函数叫做________。 (3)我更新了____个黑客头文件。 (4)万能头文件包含的黑客头文件是________。 …

2.4G无线收发芯片 XL2401D,SOP16封装,集成单片机,高性价比

XL2401D 芯片是工作在2.400~2.483GHz世界通用ISM频段,片内集成了九齐 NY8A054E单片机的SOC无线收发芯片。芯片集成射频收发机、频率收生器、晶体振荡器、调制解调器等功能模块,并且支持一对多组网和带ACK的通信模式。发射输出功率、工作频道以及通信数据…

NoSQL 非关系型数据库 Redis 的使用:

redis是基于内存型的NoSQL 非关系型数据库,本内容只针对有基础的小伙伴, 因为楼主不会做更多的解释,而是记录更多的技术接口使用,毕竟楼主不是做教学的,没有教学经验。 关于redis的介绍请自行搜索查阅。 使用redis数据…

【HICE】基于用户认证的虚拟服务搭建

1.创建特定的内容 --账号与密码(需要认证访问)【里面】 2.编辑配置1.conf的内容,更新httpd 3.编辑hehe网页(外部公开) cd /www/ echo hehe > hehe/index.html 4.更改本地hosts和window下的解析 5.浏览器下验证内…

新手快速部署Springboot 的Jar包 (图解-BuiId,Maven)

目录 项目的构建 打包前的准备 合理配置pox.xml文件 Build 打包方式 Maven打包方式 Jar包部署 测试后端接口 项目的构建 我的项目是SpringBoot2脚手架 先准备一个相对于的数据库依赖 数据库的任意库 Yaml配置后 才能正常在IDEA中跑起来 打包前的准备 合理配置pox.xm…

【qt】如何获取网卡的IP地址?

网卡相当于是一个翻译官,可以将数据转换成网络信号. 同时也可以将网络信号转换成数据. 我们要用到网卡类QNetmorkInterface 我们获取网卡的所有地址用静态函数allAddresses() 返回的还是一个QhostAddress的容器. QList<QHostAddress> addrList QNetworkInterface::allA…