LangChain 框架提供了常见用例的抽象,简化了大型语言模型(LLM)(如 OpenAI GPT4 或 Google PaLM)的应用。它支持 JavaScript 和 Python。
为了弄清楚为什么需要 LangChain,我们先来看下 LLM 的工作原理。
本质上,LLM 是统计模型,它可以从一组给定的文本块(从一个字符到几个单词都可以)预测下一组文本块。
起初的文本块称为提示,提示工程是一门通过提供最合适的提示集来优化 LLM 预测结果的艺术。
虽然 LangChain 提供了许多工具,但其最核心的功能包括以下 3 项:一个抽象层,使开发人员能够使用一组标准化的命令与不同的 LLM 提供者进行交互;一套工具,通过实施一组最佳实践来形式化提示工程的过程;将 LangChain 提供的各种组件链接在一起以执行复杂的交互。
下面的 JavaScript 示例演示了如何创建和执行只包含一个提示的最简单的链。
代码语言:javascript
const model = new OpenAI();
import { PromptTemplate } from "langchain/prompts";
const prompt = PromptTemplate.fromTemplate(`Tell me a joke about {topic}`);
const chain = new LLMChain({ llm: model, prompt: prompt });
const response = await chain.call({ topic: "ducks" });
当然,使用单个组件的链并不是很有意思。通常,比较复杂的应用程序会使用多个组件来生成所需的结果。
我们将用 SimpleSequentialChain 做个演示,它会按顺序运行多个提示。在这个例子中,我们向 LangChain 提供一门语言,并要求它使用这种语言写一个笑话,然后我们要求它将其翻译成西班牙语。
代码语言:javascript
const translatePrompt = PromptTemplate.fromTemplate(`translate the following text to Spanish: {text}`);
const translateChain = new LLMChain({ llm: model, prompt: translatePrompt });
const overallChain = new SimpleSequentialChain({
chains: [chain, translateChain],
verbose: true,
});
const results = await overallChain.run("ducks");
注意,通过将 verbose: true 传递给 SimpleSequentialChain,我们可以看到生成过程,这样便于调试。
当然,LangChain 所能做的远不止链接几个提示。它包括两个模块,允许开发人员扩展与 LLM 的交互,而不仅仅是实现简单的聊天。
Memory 模块使开发人员能够使用各种解决方案(从使用 Redis 和 DynamoDB 等外部数据库到简单地将数据存储在内存中)跨链持久化状态。
Agents 模块使链能够与外部提供者进行交互,并基于它们的响应执行操作。
感兴趣的读者可以在 LangChain 官方的文档站点上查看完整的文档以及更复杂的示例。
开发人员需要注意,LangChain 仍在积极开发之中,在生产环境中使用时应谨慎处理。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
😝有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取==🆓