机器学习-05-回归算法

总结

本系列是机器学习课程的系列课程,主要介绍机器学习中回归算法,包括线性回归,岭回归,逻辑回归等部分。

参考

fit_transform,fit,transform区别和作用详解!!!!!!

机器学习入门(七):多项式回归, PolynomialFeatures详解

“L1和L2正则化”直观理解

解读正则化 LASSO回归 岭回归

python学习之利用sklearn库自带的函数实现典型回归的回归算法(线性回归,lasso回归,岭回归)

利用sklearn实现逻辑回归

本门课程的目标

完成一个特定行业的算法应用全过程:

懂业务+会选择合适的算法+数据处理+算法训练+算法调优+算法融合
+算法评估+持续调优+工程化接口实现

机器学习定义

关于机器学习的定义,Tom Michael Mitchell的这段话被广泛引用:
对于某类任务T性能度量P,如果一个计算机程序在T上其性能P随着经验E而自我完善,那么我们称这个计算机程序从经验E中学习
在这里插入图片描述

回归算法

回归分析简介

回归分析最早是由19世纪末期高尔顿发展的。1855年,他发表了一篇文章名为“遗传的身高向平均数方向的回归”,分析父母与其孩子之间身高的关系,发现父母的身高越高的其孩子也越高,反之则越矮。他把孩子跟父母身高这种现象拟合成一种线性关系
但是他还发现个有趣的现象,高个子的人生出来的孩子往往比他父亲矮一点更趋于父母的平均身高,矮个子的人生出来的孩子通常比他父亲高一点也趋向于平均身高。高尔顿选用了“回归”一词,把这一现象叫做“向平均数方向的回归

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

线性回归

在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

线性回归案例:
import numpy as np
import matplotlib.pyplot as plt 
from bz2 import __author__
#设置随机种子 
seed = np.random.seed(100)
#构造一个100行1列到矩阵。矩阵数值生成用rand,得到到数字是0-1到均匀分布到小数。 
X = 2 * np.random.rand(100,1) #最终得到到是0-2均匀分布到小数组成到100行1列到矩阵。这一步构建列    X1(训练集数据) 
#构建y和x的关系。 np.random.randn(100,1)是构建的符合高斯分布(正态分布)的100行一列的随机数。相当于给每个y增加列一个波动值。 
y= 4 + 3 * X + np.random.randn(100,1)
#将两个矩阵组合成一个矩阵。得到的X_b是100行2列的矩阵。其中第一列全都是1. 
X_b = np.c_[np.ones((100,1)),X]
#解析解求theta到最优解 
theta_best = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y)
# 生成两个新的数据点,得到的是两个x1的值 
X_new = np.array([[0],[2]])
# 填充x0的值,两个1 
X_new_b = np.c_[(np.ones((2,1))),X_new]
# 用求得的theata和构建的预测点X_new_b相乘,得到yhat 
y_predice = X_new_b.dot(theta_best)
# 画出预测函数的图像,r-表示为用红色的线 
plt.plot(X_new,y_predice,'r-')
# 画出已知数据X和掺杂了误差的y,用蓝色的点表示 
plt.plot(X,y,'b.')
# 建立坐标轴 
plt.axis([0,2,0,15,])
plt.show()

输出为:
在这里插入图片描述

from sklearn import datasets
from sklearn.linear_model import LinearRegression
data = datasets.load_boston()
linear_model = LinearRegression()
linear_model.fit(data.data,data.target)
linear_model. coef_    #获取模型自变量系数
linear_model.intercept_   #获取模型

输出如下:
在这里插入图片描述

d:\ProgramData\Anaconda3\lib\site-packages\sklearn\utils\deprecation.py:87: FutureWarning: Function load_boston is deprecated; load_boston is deprecated in 1.0 and will be removed in 1.2.

The Boston housing prices dataset has an ethical problem. You can refer to
the documentation of this function for further details.

The scikit-learn maintainers therefore strongly discourage the use of this
dataset unless the purpose of the code is to study and educate about
ethical issues in data science and machine learning.

In this special case, you can fetch the dataset from the original
source::

    import pandas as pd
    import numpy as np


    data_url = "http://lib.stat.cmu.edu/datasets/boston"
    raw_df = pd.read_csv(data_url, sep="\s+", skiprows=22, header=None)
    data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]])
    target = raw_df.values[1::2, 2]

Alternative datasets include the California housing dataset (i.e.
:func:`~sklearn.datasets.fetch_california_housing`) and the Ames housing
dataset. You can load the datasets as follows::

    from sklearn.datasets import fetch_california_housing
    housing = fetch_california_housing()

for the California housing dataset and::

    from sklearn.datasets import fetch_openml
    housing = fetch_openml(name="house_prices", as_frame=True)

for the Ames housing dataset.

warnings.warn(msg, category=FutureWarning)

from sklearn.metrics import mean_squared_error
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression

data = datasets.load_boston()
x = data.data
y = data.target
x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=1)
linear_model = LinearRegression()
linear_model.fit(x_train,y_train)
y_predict = linear_model.predict(x_test)
mean_squared_error(y_test,y_predict)

输出为:
在这里插入图片描述

多项式回归

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在 sklearn你得到多项式回归:
使用 sklearn.preprocessing.PolynomialFeatures 在原始数据集上生成多项式和交互特征
使用 sklearn.linear_model.LinearRegression 在转换后的数据集上运行普通最小二乘线性回归

from sklearn.metrics import mean_squared_error
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
# PolynomialFeatures方法实现 Poly多 nomial  Features方法实现
model_1  = PolynomialFeatures(degree=2)
data = datasets.load_boston()
x = data.data
y = data.target
x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=1)

linear_model = LinearRegression()
linear_model.fit(model_1.fit_transform(x_train),y_train)

y_predict = linear_model.predict(model_1.fit_transform(x_test))
mean_squared_error(y_test,y_predict)

输出为:
在这里插入图片描述

在这里插入图片描述

多项式回归案例

下面通过一个案例,来说明多项式回归,参考:
机器学习入门(七):多项式回归, PolynomialFeatures详解
首先创建数据并且添加噪音:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
X = np.sort(3 * np.random.rand(40, 1), axis=0)  
y = np.sin(X).ravel()   
# 噪音
y[::5] += 2.5 * (0.5 - np.random.rand(8)) 
plt.plot(X,y,'b^')
plt.show()

输出为
在这里插入图片描述

然后实现多项式矩阵,并且训练模型,查看训练出来的系数w和截距b:

lr = LinearRegression()
pf=PolynomialFeatures(degree=2)
lr.fit(pf.fit_transform(X), y)
print(lr.coef_)
print(lr.intercept_)

输出为:
在这里插入图片描述

正好三个系数,分别对应常数项,一次项,二次项。
然后绘制图像:

xx = np.linspace(0, 5, 100) #生成密集点
xx2 = pf.transform(xx[:, np.newaxis]) #转换格式

yy2 = lr.predict(xx2)
plt.plot(X,y,'b^')
plt.plot(xx ,yy2,c='r')

输出为:
在这里插入图片描述

过拟合问题与正则化

过拟合

在这里插入图片描述

对于一组给定的数据,我们需要通过机器学习算法去拟合得到一个模型(对应图中曲线)。根据我们对拟合的控制和调整,这个模型可以有无数多种(一条直线,或各种形状的曲线等)。这么多种当中,哪一种是我们想要的最优结果呢?哪一种最好呢?
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

正则化

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

Ridge岭回归和Lasso回归

L2正则化 Ridge岭回归

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

L1正则化:LASSO回归

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

Ridge回归,即添加了L2正则化的线性回归;
Lasso,即添加了L1正则化的线性回归。
L1和L2正则化的目的都是使模型系数尽可能小,从而解决模型的过拟合问题。
他们的区别在于,l1正则化限制模型系数的l1范数尽可能小;
l2正则化限制模型系数的l2范数尽可能小。
即,Lasso回归会趋向于产生少量的特征,而其他的特征都是0,
而Ridge回归会选择更多的特征,这些特征都会接近于0。

岭回归案例
from sklearn import linear_model
from sklearn.metrics import mean_squared_error
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression

data = datasets.load_boston()
x = data.data
y = data.target
x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=1)
# linear_model 训练
model_1 = LinearRegression()
model_1.fit(x_train,y_train)
y_predict = model_1.predict(x_test)
print("model_1\n",mean_squared_error(y_test,y_predict))
print("model_1.coef_ \n",model_1.coef_)

# redge岭回归
reg = linear_model.Ridge (alpha = .5)
reg.fit(x_train,y_train)
y_predict = reg.predict(x_test)
print("reg\n",mean_squared_error(y_test,y_predict))
print("reg.coef_ \n",reg.coef_)

在这里插入图片描述

Lasso回归案例
from sklearn import linear_model
from sklearn.metrics import mean_squared_error
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression

data = datasets.load_boston()
x = data.data
y = data.target
x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=1)
# linear_model 训练
model_1 = LinearRegression()
model_1.fit(x_train,y_train)
y_predict = model_1.predict(x_test)
print("model_1\n",mean_squared_error(y_test,y_predict),"\n")
print("model_1.coef_ \n",model_1.coef_,"\n")


# redge岭回归
reg = linear_model.Ridge (alpha = .5)
reg.fit(x_train,y_train)
y_predict = reg.predict(x_test)
print("reg\n",mean_squared_error(y_test,y_predict),"\n")
print("reg.coef_ \n",reg.coef_,"\n")
# ========Lasso回归========
model = linear_model.Lasso(alpha=0.01)  # 调节alpha可以实现对拟合的程度
# model = linear_model.LassoCV()  # LassoCV自动调节alpha可以实现选择最佳的alpha。
# model = linear_model.LassoLarsCV()  # LassoLarsCV自动调节alpha可以实现选择最佳的alpha


model.fit(x_train,y_train)
y_predict = model.predict(x_test)
print("lasso \n",mean_squared_error(y_test,y_predict),"\n")
print("lasso.coef_ \n",model.coef_,"\n")

输出为:
在这里插入图片描述

逻辑回归

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

逻辑回归案例
#导入数值计算的基础库
import numpy as np 
## 导入画图库
import matplotlib.pyplot as plt
import seaborn as sns
## 导入逻辑回归模型函数
from sklearn.linear_model import LogisticRegression


#利用numpy随意构造我们想要的数据集及其标签
x_fearures = np.array([[-1, -2], [-2, -1], [-3, -2], [1, 3], [2, 1], [3, 2]])
y_label = np.array([0, 0, 0, 1, 1, 1])



# 调用逻辑回归模型
lr_clf = LogisticRegression()
# 用逻辑回归模型拟合构造的数据集
lr_clf = lr_clf.fit(x_fearures, y_label) #其拟合方程为 y=w0+w1*x1+w2*x2



# 生成两个新的样本
x_fearures_new1 = np.array([[0, -1]])
x_fearures_new2 = np.array([[1, 2]])
# 利用在训练集上训练好的模型进行预测
y_label_new1_predict = lr_clf.predict(x_fearures_new1)
y_label_new2_predict = lr_clf.predict(x_fearures_new2)
# 打印预测结果
print('The New point 1 predict class:\n',y_label_new1_predict)
print('The New point 2 predict class:\n',y_label_new2_predict)

# 由于逻辑回归模型是概率预测模型,所有我们可以利用 predict_proba 函数预测其概率
# predict_proba 函数可以预测样本属于每一类的概率值
y_label_new1_predict_proba = lr_clf.predict_proba(x_fearures_new1)
y_label_new2_predict_proba = lr_clf.predict_proba(x_fearures_new2)

print('The New point 1 predict Probability of each class:\n',y_label_new1_predict_proba)
print('The New point 2 predict Probability of each class:\n',y_label_new2_predict_proba)

# The New point 1 predict class:
# [0]
# The New point 2 predict class:
# [1]
# The New point 1 predict Probability of each class:
# [[0.69567724 0.30432276]]
# The New point 2 predict Probability of each class:
# [[0.11983936 0.88016064]]


# 查看其对应模型的w(各项的系数)
print('the weight of Logistic Regression:',lr_clf.coef_)
# 查看其对应模型的w0(截距)
print('the intercept(w0) of Logistic Regression:',lr_clf.intercept_)

# the weight of Logistic Regression: [[0.73455784 0.69539712]]
# the intercept(w0) of Logistic Regression: [-0.13139986]

输出为:
在这里插入图片描述

## 可视化构造的训练数据
plt.figure()
plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='viridis')
plt.title('Dataset')
plt.show()

输出为:
在这里插入图片描述

# 可视化决策边界

# 先可视化训练数据
plt.figure()
plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='viridis')
plt.title('Dataset')

# 将上面绘制的训练数据的图像,在x轴范围内等距均分为200点,y轴范围内等距均分为100个点,
# 就相当于在绘制的图像上划分了间隔相等的20000个点(100行,200列)
nx, ny = 200, 100
x_min, x_max = plt.xlim()
y_min, y_max = plt.ylim()
x_grid, y_grid = np.meshgrid(np.linspace(x_min, x_max, nx),np.linspace(y_min, y_max, ny))
# 并分别预测这20000个点y=1的概率,并设置绘制轮廓线的位置为0.5(即y=0.5处,绘制等高线高度),并设置线宽为2,
# 颜色为蓝色(图中蓝色线即为决策边界),当然我们也可以将将0.5设置为其他的值,更换绘制等高线的位置,
# 同时也可以设置一组0~1单调递增的值,绘制多个不同位置的等高线
# 也可以理解为,此时我们将0.5设置为阈值,当p>0.5时,y=1;p<0.5时,y=0,蓝色线就是分界线
z_proba = lr_clf.predict_proba(np.c_[x_grid.ravel(), y_grid.ravel()])
z_proba = z_proba[:, 1].reshape(x_grid.shape)
plt.contour(x_grid, y_grid, z_proba, [0.5], linewidths=2., colors='blue')

plt.show()

输出为:
在这里插入图片描述

# 可视化测试数据
plt.figure()
# 可视化测试数据1, 并进行相应的文字注释
x_fearures_new1 = np.array([[0, -1]])
plt.scatter(x_fearures_new1[:,0],x_fearures_new1[:,1], s=50, cmap='viridis')
plt.annotate(text='New point 1',xy=(0,-1),xytext=(-2,0),color='blue',arrowprops=dict(arrowstyle='-|>',connectionstyle='arc3',color='red'))

# 可视化测试数据2, 并进行相应的文字注释
x_fearures_new2 = np.array([[1, 2]])
plt.scatter(x_fearures_new2[:,0],x_fearures_new2[:,1], s=50, cmap='viridis')
plt.annotate(text='New point 2',xy=(1,2),xytext=(-1.5,2.5),color='red',arrowprops=dict(arrowstyle='-|>',connectionstyle='arc3',color='red'))

# 可视化训练数据
plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='viridis')
plt.title('Dataset')

# 可视化决策边界
plt.contour(x_grid, y_grid, z_proba, [0.5], linewidths=2., colors='blue')

plt.show()

输出为:
在这里插入图片描述

确定方向过程

针对完全没有基础的同学们
1.确定机器学习的应用领域有哪些
2.查找机器学习的算法应用有哪些
3.确定想要研究的领域极其对应的算法
4.通过招聘网站和论文等确定具体的技术
5.了解业务流程,查找数据
6.复现经典算法
7.持续优化,并尝试与对应企业人员沟通心得
8.企业给出反馈

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/486428.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【Java】基于SpringCloud的考研复试辅导平台

1、前端请求后端服务提供的接口。 2、后端服务的控制层Controller接收前端的请求。 3、Contorller层调用Service层进行业务处理。 4、Service层调用Dao持久层对数据持久化。 XXX-api&#xff1a;接口工程&#xff0c;为前端提供接口。 XXX-service: 业务工程&#xff0c;为…

模型怎么处理不同尺寸的输入图像

1.有全连接层的的CNN模型 卷积能够处理不同尺寸的输入图像&#xff0c;但全连接层不行&#xff0c;因此在送入全连接层之前需将卷积层提取的特征转换为一个固定长度的特征向量。 那么如何转换&#xff1f; 1.1 GAP(Global Average Pooling)全局平均池化 直接代码举例&#…

后端常问面经之Spring和Mybatis框架

Spring的IOC介绍一下&#xff1a; 所谓控制就是对象的创建、初始化、销毁。 创建对象&#xff1a;原来是 new 一个&#xff0c;现在是由 Spring 容器创建。 初始化对象&#xff1a;原来是对象自己通过构造器或者 setter 方法给依赖的对象赋值&#xff0c;现在是由 Spring 容器…

【C++从练气到飞升】05---运算符重载

&#x1f388;个人主页&#xff1a;库库的里昂 ✨收录专栏&#xff1a;C从练气到飞升 &#x1f389;鸟欲高飞先振翅&#xff0c;人求上进先读书。 目录 ⛳️推荐 一、运算符重载的引用 二、运算符重载 三、赋值运算符重载 1 .赋值运算符重载格式: 2 .赋值运算符只能重载成…

第十三届蓝桥杯省赛真题 Java A 组【原卷】

文章目录 发现宝藏【考生须知】试题 A: 裁纸刀试题 B: 寻找整数试题 C : \mathrm{C}: C: 求和试题 D: GCD试题 E: 蜂巢试题 F : \mathrm{F}: F: 全排列的价值试题 G: 青蛙过河试题 H \mathrm{H} H : 因数平方和试题 I: 最优清零方案试题 J : \mathrm{J}: J: 推导部分和 发现…

挖掘产品新的价值需求 5个重点

挖掘产品新的价值需求&#xff0c;是非常重要。这有助于区分于其竞争对手&#xff0c;提高产品竞争力和用户体验&#xff0c;增加用户满意度。如果没有挖掘产品新的价值需求&#xff0c;产品可能无法满足用户新的需求和期望&#xff0c;满意度降低&#xff0c;在市场竞争中处于…

2022年全国职业院校技能大赛(网络系统管理赛项)样题五

2022****年全国职业院校技能大赛 网络系统管理赛项 模块A&#xff1a;网络构建 &#xff08;样题5&#xff09; 目录 任务描述… 3 任务清单… 3 &#xff08;一&#xff09;基础配置… 3 &#xff08;二&#xff09;有线网络配置… 3 &#xff08;三&#xff09;无线…

canvas跟随鼠标移动画带透明度的线(画涂鸦)

提示&#xff1a;canvas画线 文章目录 前言一、带透明度的线二、试错&#xff0c;只有lineTo的时候画&#xff0c;只有最后地方是透明度的三、试错&#xff0c;只存上一次的点&#xff0c;线会出现断裂的情况总结 前言 一、带透明度的线 test.html <!DOCTYPE html> &l…

H5实现Web ECharts教程:轻松创建动态数据图表

&#x1f31f; 前言 欢迎来到我的技术小宇宙&#xff01;&#x1f30c; 这里不仅是我记录技术点滴的后花园&#xff0c;也是我分享学习心得和项目经验的乐园。&#x1f4da; 无论你是技术小白还是资深大牛&#xff0c;这里总有一些内容能触动你的好奇心。&#x1f50d; &#x…

python面向对象 | 类和对象

欢迎关注博主 Mindtechnist 或加入【Linux C/C/Python社区】一起学习和分享Linux、C、C、Python、Matlab&#xff0c;机器人运动控制、多机器人协作&#xff0c;智能优化算法&#xff0c;滤波估计、多传感器信息融合&#xff0c;机器学习&#xff0c;人工智能等相关领域的知识和…

Mysql事务及存储引擎

一、Mysql事务 1.1 Mysql事务的概念 所谓事务&#xff0c;它是一个操作序列&#xff0c;这些操作要么都执行&#xff0c;要么都不执行&#xff0c;它是一个不可分割的工作单位。 1.2 事务的ACID特点 事务应该具有的四个特性&#xff1a;原子性&#xff08;Atomicity&#xff09…

knife4j/swagger救援第一现场

1、前方来报&#xff0c;测试环境springboot项目无法启动&#xff0c;现场如下&#xff1a; Error starting ApplicationContext. To display the auto-configuration report re-run your application with debug enabled. [ERROR] 2024-03-20 12:54:42,718 --main-- [org.spr…

layui框架实战案例(25):laydate中mark的数据后端生成

mark&#xff0c;自定义日期标记。该属性是对 calendar 属性的进一步延伸&#xff0c;灵活度更高。属性可批量设置多个日期标记&#xff0c;如&#xff1a; mark: {0-10-14: 生日, //每年每月的某一天0-0-10: 工资, // 每月 10 号2008-8-8: 开幕, // 指定的日期 }其中日期的格式…

如何在Linux系统使用Docker本地部署Halo网站并实现无公网IP远程访问

最近&#xff0c;我发现了一个超级强大的人工智能学习网站。它以通俗易懂的方式呈现复杂的概念&#xff0c;而且内容风趣幽默。我觉得它对大家可能会有所帮助&#xff0c;所以我在此分享。点击这里跳转到网站。 文章目录 1. Docker部署Halo1.1 检查Docker版本如果未安装Docker可…

[Linux初阶]which-find-grep-wc-管道符命令

目录 一.which 二.find a.-name b.-size 三.grep 四.wc 五.管道符(|) 五.总结 一.which 语法格式: which [命令] Linux中的一个个命令,本体上就是一个个的二进制可执行程序(相当于windows中的.exe文件). 在Linux中,一切皆文件. which命令:用于查看指定命令的可执行…

恒创科技:服务器反应慢如何解决?

​  通常来说&#xff0c;访问者会在最初的几秒钟内决定是留在您的网站还是离开。如果页面加载时间超过五秒&#xff0c;访问者离开的可能性就会增加 90%。所以&#xff0c;作为站长们&#xff0c;必须减少服务器响应时间&#xff0c;以确保其网站加载速度更快。以下是减少网…

ceres-solver-1.14.0安装教程

引言 简单记录下安装ceres-solver-1.14.0的过程&#xff0c;简单了解。 1、下载安装包 wget ceres-solver.org/ceres-solver-1.14.0.tar.gz 2、安装依赖 sudo apt-get install -y cmake libgoogle-glog-dev libatlas-base-dev libsuitesparse-dev3、 cd ceres-solver-1.14…

【包远程安装运行】SpringBoot+Mysql+Vue实现的4S店保养与维修系统源码+运行视频+包运行+开发文档

今天发布的是一款由SpringBootVueMysql实现的4S店保养与维修后台管理系统&#xff0c;该系统共分为两个角色&#xff0c;具体的功能如下&#xff1a; 管理员功能&#xff1a;供应商管理、采购管理、品牌管理、维修报单管理、车型管理、配件管理、车辆信息管理、套餐管理、维修记…

力扣HOT100 - 11. 盛最多水的容器

解题思路&#xff1a; 双指针&#xff0c;从左右两边往内侧夹逼&#xff0c;遍历后得到最大值 class Solution {public int maxArea(int[] height) {int i 0, j height.length - 1, res 0;while(i < j) {res height[i] < height[j] ? Math.max(res, (j - i) * heig…

如何在Linux系统使用宝塔面板搭建Inis博客并发布至公网【内网穿透】

文章目录 前言1. Inis博客网站搭建1.1. Inis博客网站下载和安装1.2 Inis博客网站测试1.3 cpolar的安装和注册 2. 本地网页发布2.1 Cpolar临时数据隧道2.2 Cpolar稳定隧道&#xff08;云端设置&#xff09;2.3.Cpolar稳定隧道&#xff08;本地设置&#xff09; 3. 公网访问测试总…