模型怎么处理不同尺寸的输入图像

1.有全连接层的的CNN模型

卷积能够处理不同尺寸的输入图像,但全连接层不行,因此在送入全连接层之前需将卷积层提取的特征转换为一个固定长度的特征向量。

那么如何转换?

1.1 GAP(Global Average Pooling)全局平均池化

直接代码举例:

import torch
import torch.nn as nn
from torchvision import transforms

# 定义带有全连接层和全局平均池化层的 CNN 模型
class CNNWithGlobalAvgPool(nn.Module):
    def __init__(self):
        super(CNNWithGlobalAvgPool, self).__init__()
        self.conv1 = nn.Conv2d(3, 16, 3)
        self.conv2 = nn.Conv2d(16, 32, 3)
        self.fc = nn.Linear(32, 10)  # 假设输出类别数为 10
        self.global_avg_pool = nn.AdaptiveAvgPool2d(1)

    def forward(self, x):           #(1,3,224,224)
        x = self.conv1(x)           #(1,16,222,222)
        x = self.conv2(x)           #(1,32,220,220)
        x = self.global_avg_pool(x) #(1,32,1,1)
        x = x.view(x.size(0), -1)   #(1,32)
        x = self.fc(x)              #(1,10)
        return x

# 创建模型实例
model = CNNWithGlobalAvgPool()

image = torch.randn(1,3,224,224)

output = model(image)
print(output)

 左边为普通卷积网络提取特征num_chanels*h*w后全部展开成一维向量num_chanels*h*w,再送入到全连接层,不同尺寸的图像得到不同的一维向量,输入到全连接层的in_feature数就不同,故需要统一尺寸。

右图为GAP,直接将每个通道的所有特征取平均得到num_chanels*1的向量,这样就与输入图像尺寸无关了。

1.2 SPP(Spatial Pyramid Pooling)空间金字塔池化。其中,全局平均池化是空间金字塔池化的一种特殊形式,只使用一个池化层。

上示例代码:

import torch
import torch.nn as nn
import torch.nn.functional as F

class SpatialPyramidPooling(nn.Module):
    def __init__(self, levels=[1, 2, 4]):
        super(SpatialPyramidPooling, self).__init__()
        self.levels = levels

    def forward(self, x):
        N, C, H, W = x.size()
        output = []
        
        for level in self.levels:
            kh = H // level
            kw = W // level
            for i in range(level):
                for j in range(level):
                    h_start = i * kh
                    w_start = j * kw
                    h_end = min(h_start + kh, H)
                    w_end = min(w_start + kw, W)
                    
                    pool_feat = F.adaptive_max_pool2d(x[:, :, h_start:h_end, w_start:w_end], (1, 1))
                    output.append(pool_feat.view(N, -1))

        output = torch.cat(output, dim=1)
        
        return output

# 使用示例
spp = SpatialPyramidPooling(levels=[1, 2, 4])
input_data = torch.randn(1, 3, 32, 32)  # 输入数据大小为(1, 3, 32, 32)
output = spp(input_data)
print(output.size())

 SPP:将特征图划分成不同尺寸的子区域,如1x1、2x2、4x4等不同级别的子区域,对每个子区域进行池化操作,通常是最大池化或平均池化,将这些子区域内的特征映射转换为固定长度的向量,最后将这些向量连接在一起,形成一个具有固定维度的特征表示。

2.FCN全卷积模型

没有全连接层,故可以处理不同尺寸的输入图像

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/486426.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

后端常问面经之Spring和Mybatis框架

Spring的IOC介绍一下: 所谓控制就是对象的创建、初始化、销毁。 创建对象:原来是 new 一个,现在是由 Spring 容器创建。 初始化对象:原来是对象自己通过构造器或者 setter 方法给依赖的对象赋值,现在是由 Spring 容器…

【C++从练气到飞升】05---运算符重载

🎈个人主页:库库的里昂 ✨收录专栏:C从练气到飞升 🎉鸟欲高飞先振翅,人求上进先读书。 目录 ⛳️推荐 一、运算符重载的引用 二、运算符重载 三、赋值运算符重载 1 .赋值运算符重载格式: 2 .赋值运算符只能重载成…

第十三届蓝桥杯省赛真题 Java A 组【原卷】

文章目录 发现宝藏【考生须知】试题 A: 裁纸刀试题 B: 寻找整数试题 C : \mathrm{C}: C: 求和试题 D: GCD试题 E: 蜂巢试题 F : \mathrm{F}: F: 全排列的价值试题 G: 青蛙过河试题 H \mathrm{H} H : 因数平方和试题 I: 最优清零方案试题 J : \mathrm{J}: J: 推导部分和 发现…

挖掘产品新的价值需求 5个重点

挖掘产品新的价值需求,是非常重要。这有助于区分于其竞争对手,提高产品竞争力和用户体验,增加用户满意度。如果没有挖掘产品新的价值需求,产品可能无法满足用户新的需求和期望,满意度降低,在市场竞争中处于…

2022年全国职业院校技能大赛(网络系统管理赛项)样题五

2022****年全国职业院校技能大赛 网络系统管理赛项 模块A:网络构建 (样题5) 目录 任务描述… 3 任务清单… 3 (一)基础配置… 3 (二)有线网络配置… 3 (三)无线…

canvas跟随鼠标移动画带透明度的线(画涂鸦)

提示&#xff1a;canvas画线 文章目录 前言一、带透明度的线二、试错&#xff0c;只有lineTo的时候画&#xff0c;只有最后地方是透明度的三、试错&#xff0c;只存上一次的点&#xff0c;线会出现断裂的情况总结 前言 一、带透明度的线 test.html <!DOCTYPE html> &l…

H5实现Web ECharts教程:轻松创建动态数据图表

&#x1f31f; 前言 欢迎来到我的技术小宇宙&#xff01;&#x1f30c; 这里不仅是我记录技术点滴的后花园&#xff0c;也是我分享学习心得和项目经验的乐园。&#x1f4da; 无论你是技术小白还是资深大牛&#xff0c;这里总有一些内容能触动你的好奇心。&#x1f50d; &#x…

python面向对象 | 类和对象

欢迎关注博主 Mindtechnist 或加入【Linux C/C/Python社区】一起学习和分享Linux、C、C、Python、Matlab&#xff0c;机器人运动控制、多机器人协作&#xff0c;智能优化算法&#xff0c;滤波估计、多传感器信息融合&#xff0c;机器学习&#xff0c;人工智能等相关领域的知识和…

Mysql事务及存储引擎

一、Mysql事务 1.1 Mysql事务的概念 所谓事务&#xff0c;它是一个操作序列&#xff0c;这些操作要么都执行&#xff0c;要么都不执行&#xff0c;它是一个不可分割的工作单位。 1.2 事务的ACID特点 事务应该具有的四个特性&#xff1a;原子性&#xff08;Atomicity&#xff09…

knife4j/swagger救援第一现场

1、前方来报&#xff0c;测试环境springboot项目无法启动&#xff0c;现场如下&#xff1a; Error starting ApplicationContext. To display the auto-configuration report re-run your application with debug enabled. [ERROR] 2024-03-20 12:54:42,718 --main-- [org.spr…

layui框架实战案例(25):laydate中mark的数据后端生成

mark&#xff0c;自定义日期标记。该属性是对 calendar 属性的进一步延伸&#xff0c;灵活度更高。属性可批量设置多个日期标记&#xff0c;如&#xff1a; mark: {0-10-14: 生日, //每年每月的某一天0-0-10: 工资, // 每月 10 号2008-8-8: 开幕, // 指定的日期 }其中日期的格式…

如何在Linux系统使用Docker本地部署Halo网站并实现无公网IP远程访问

最近&#xff0c;我发现了一个超级强大的人工智能学习网站。它以通俗易懂的方式呈现复杂的概念&#xff0c;而且内容风趣幽默。我觉得它对大家可能会有所帮助&#xff0c;所以我在此分享。点击这里跳转到网站。 文章目录 1. Docker部署Halo1.1 检查Docker版本如果未安装Docker可…

[Linux初阶]which-find-grep-wc-管道符命令

目录 一.which 二.find a.-name b.-size 三.grep 四.wc 五.管道符(|) 五.总结 一.which 语法格式: which [命令] Linux中的一个个命令,本体上就是一个个的二进制可执行程序(相当于windows中的.exe文件). 在Linux中,一切皆文件. which命令:用于查看指定命令的可执行…

恒创科技:服务器反应慢如何解决?

​  通常来说&#xff0c;访问者会在最初的几秒钟内决定是留在您的网站还是离开。如果页面加载时间超过五秒&#xff0c;访问者离开的可能性就会增加 90%。所以&#xff0c;作为站长们&#xff0c;必须减少服务器响应时间&#xff0c;以确保其网站加载速度更快。以下是减少网…

ceres-solver-1.14.0安装教程

引言 简单记录下安装ceres-solver-1.14.0的过程&#xff0c;简单了解。 1、下载安装包 wget ceres-solver.org/ceres-solver-1.14.0.tar.gz 2、安装依赖 sudo apt-get install -y cmake libgoogle-glog-dev libatlas-base-dev libsuitesparse-dev3、 cd ceres-solver-1.14…

【包远程安装运行】SpringBoot+Mysql+Vue实现的4S店保养与维修系统源码+运行视频+包运行+开发文档

今天发布的是一款由SpringBootVueMysql实现的4S店保养与维修后台管理系统&#xff0c;该系统共分为两个角色&#xff0c;具体的功能如下&#xff1a; 管理员功能&#xff1a;供应商管理、采购管理、品牌管理、维修报单管理、车型管理、配件管理、车辆信息管理、套餐管理、维修记…

力扣HOT100 - 11. 盛最多水的容器

解题思路&#xff1a; 双指针&#xff0c;从左右两边往内侧夹逼&#xff0c;遍历后得到最大值 class Solution {public int maxArea(int[] height) {int i 0, j height.length - 1, res 0;while(i < j) {res height[i] < height[j] ? Math.max(res, (j - i) * heig…

如何在Linux系统使用宝塔面板搭建Inis博客并发布至公网【内网穿透】

文章目录 前言1. Inis博客网站搭建1.1. Inis博客网站下载和安装1.2 Inis博客网站测试1.3 cpolar的安装和注册 2. 本地网页发布2.1 Cpolar临时数据隧道2.2 Cpolar稳定隧道&#xff08;云端设置&#xff09;2.3.Cpolar稳定隧道&#xff08;本地设置&#xff09; 3. 公网访问测试总…

Paper Digest|基于在线聚类的自监督自蒸馏序列推荐模型

论文标题&#xff1a; Leave No One Behind: Online Self-Supervised Self-Distillation for Sequential Recommendation 作者姓名&#xff1a; 韦绍玮、吴郑伟、李欣、吴沁桐、张志强、周俊、顾立宏、顾进杰 组织单位&#xff1a; 蚂蚁集团 录用会议&#xff1a; WWW 2024 …

【计算机】——51单片机——持续更新

单片机是一种内部包含CPU、存储器和输入/输出接口等电路的集成电路&#xff08;IC芯片&#xff09; 单片机是单片微型计算机&#xff08;Single Chip Microcomputer&#xff09;的简称&#xff0c;用于控制领域&#xff0c;所以又称为微型控制器&#xff08;Microcontroller U…