Python知识汇总

 重要链接:

matplotlib库:matplotlib — Matplotlib 3.5.1 documentation

DataFrame库:DataFrame — pandas 2.2.1 documentation (pydata.org)

Python Matplotlib 实现散点图、曲线图、箱状图、柱状图示例:Python Matplotlib 实现散点图、曲线图、箱状图、柱状图示例(满足基本的画图需求)_matplotlib实现散点图-CSDN博客

绘图颜色色板:matplotlib、seaborn颜色、调色板、调色盘。 - 知乎

常用函数:

基础操作合集:

获取所有列名

list(df)

df.columns.tolist()

list(df.columns)

获取数据类型

type(df) 

如显示:<class 'padas.core.frame.DataFrame>

获取每列类型df.dtypes

Pandas读取某列某行数据——loc、iloc

loc:通过行、列的名称或标签来索引
iloc:通过行、列的索引位置来寻找数据

数据:
      AA  BB  CC  DD  EE
row1  2   3   56  55  4
row2  5   7   4   34  5
row3  9   7   4   7   15
row4  5  72   43  34  5

data1 = data.loc['row2']   #row2一行的值
data1 = data.loc['row2',:] #row2一行的值
data2 = data.loc[ : ,'BB'] #BB一列的值
data3 = data.loc['row1', 'BB'] #row1行BB列对应的值,3
data4 = data.loc['row2':'row3','AA':'DD']  #第2行到第3行,第BB列到第DD列这个区域内的值
data5 = data.loc[ data.BB > 6] #等价于 data5 = data[data.BB > 6] #BB列大于6的每一行数据
data6 = data.loc[ data.BB >6, ["BB","CC","DD"]] #切片操作,选择BB CC DD三列区域内BB列大于6的值

 
data1 = data.iloc[1]  #第二行的值,
data1 = data.iloc[1, :]  #效果与上面相同
data2 = data.iloc[:, 1] #读取第二列的值
data3 = data.iloc[1, 1] # 读取第二行,第二列的值
data4 = data.iloc[1:3, 2:4] #左闭右开切片操作,第2、3行,第3、4列值

Python、Numpy和Pandas数据类型:

Python中的str和Numpy中的string、unicode(字符编码),在Pandas中都表示为object,也就是字符串在Pandas中的类型为object。

datetime数据类型转换:

#object转为datatime
df = pd.DataFrame({'date': ['2011-04-24 01:30:00.000']})
df['date'] = pd.to_datetime(df['date'])
#打印结果
0   2011-04-24 01:30:00
Name: date, dtype: datetime64[ns]
#datatime转为非时间数据
df['date'] = df['date'].astype('object')
#打印结果
0   2011-04-24 01:30:00
Name: date, dtype: object

#如果字符串格式不正规,可以通过format转换
pd.to_datetime("20110424 01:30:00.000", format='%Y%m%d %H:%M:%S.%f')

时间补全、重采集resample()函数:

采样频率:python时序分析之重采集(resample) - 知乎

resampling采样相关算法、属性:Resampling — pandas 2.2.1 documentation (pydata.org)

按照一分钟的频率将时间补全,mean()将补齐的时间数据识别为NaN
#ffill()方法使用前面的值来填充缺失的值,interpolate()是使用插值法补全,bfill()是向后补全
df=df.resample('1T').mean().ffill()
#获得五分钟为间隔的数据,asfreq()也可以换成其他,如first()
df5=df.resample('5T').asfreq()
df5=df.loc[::5,:]

pandas.Dataframe.set_index( )函数设置索引:

索引设置
df.set_index(keys, drop=True, append=False, inplace=False, verify_integrity=False)
-keys:列标签或列标签/数组列表,需要设置为索引的列
-drop:默认为True,删除用作新索引的列
-append:是否将列附加到现有索引,默认为False。
-inplace:输入布尔值,表示当前操作是否对原数据生效,默认为False。
-verify_integrity:检查新索引的副本。否则,请将检查推迟到必要时进行。将其设置为false将提高该方法的性能,默认为false。

pandas.Dataframe.reset_index()函数重置索引:

将索引列变为普通数据列
drop: 重新设置索引后是否将原索引作为新的一列并入DataFrame,默认为False
inplace: 是否在原DataFrame上改动,默认为False
level: 如果索引(index)有多个列,仅从索引中删除level指定的列,默认删除所有列
col_level: 如果列名(columns)有多个级别,决定被删除的索引将插入哪个级别,默认插入第一级
col_fill: 如果列名(columns)有多个级别,决定其他级别如何命名

import pandas as pd
import numpy as np

df = pd.DataFrame([('bird', 389.0), ('bird', 24.0), ('mammal', 80.5), ('mammal', np.nan)],
                  index=['falcon', 'parrot', 'lion', 'monkey'], columns=('class', max_speed'))
#图1
print(df)
#图2
df1 = df.reset_index()
print(df1)
#图3
df2 = df.reset_index(drop=True)
print(df2)

pandas.Dataframe.rename()函数:

用来修改Dataframe数据的行名和列名。
columns:列名
index:行名
axis:指定坐标轴
inplace:是否替换,默认为False。inplace为False时返回修改后结果,变量自身不修改。inplace为True时返回None,变量自身被修改。

>>> import pandas as pd
>>> df  
   A  B
0  1  4
1  2  5
2  3  6

# 方法一:不用axis修改。使用方法为df.rename(columns={"旧列名": "新列名"}) 
>>> df.rename(columns={"A": "a", "B": "c"})  # 修改columns。inplace未设置,返回修改后的结果
   a  c
0  1  4
1  2  5
2  3  6
>>> df  # inplace未设置,默认为false,则df自身不被改变
   A  B
0  1  4
1  2  5
2  3  6
>>> df_re=df.rename(columns={"A": "a", "B": "c"},index={0:"0a",1:"1a"})  # 同时修改行名和列名
>>> df_re
    a  c
0a  1  4
1a  2  5
2   3  6

# 方法二:用axis修改,只修改行名列名之一时等价,无法同时修改
>>> df.rename({1: 2, 2: 4}, axis='index')  # 修改行名,1改成2,2改成4
   A  B
0  1  4
2  2  5
4  3  6
>>> df.rename(str.lower, axis='columns')  # 列名大写变小写
   a  b
0  1  4
1  2  5
2  3  6


绘图函数:

plt.annotate()函数:

用于在图中标注文字,需要用循环配合,一个点一个点的标记。

曲线中异常点/特征点的标记方法。

 参考:https://matplotlib.org/3.5.1/api/_as_gen/matplotlib.pyplot.annotate.html

#参数
#s 为注释文本内容
#xy 为被注释的坐标点
#xytext 为注释文字的坐标位置;
#weight 设置字体线型;color 设置字体颜色;arrowprops 箭头参数,参数类型为字典dict;bbox给标题增加外框 

import matplotlib.pyplot as plt
import numpy as np

x = np.arange(0, 6)
y = x * x

#图1
plt.plot(x, y, marker='o')
for xy in zip(x, y):
    plt.annotate("(%s,%s)" %(x,y), xy=xy, xytext=(-20, 10), textcoords='offset points')
plt.show()

#图2
ax.annotate('data = (%.1f, %.1f)'%(xdata, ydata),
            (xdata, ydata), xytext=(-2*offset, offset), textcoords='offset points',
            bbox=bbox, arrowprops=arrowprops)

#图3,上述用于标注文字,但如果想把特殊的坐标用点标示出来可以结合散点图函数
x1=list()
y1=list()
plt.plot(x, y, marker='o')
for xy in zip(x, y):
    if x>3:
        plt.annotate("(%s,%s)" %(x,y), xy=xy, xytext=(-20, 10), textcoords='offset points')
        x1.append(x)
        y1.append(y)
plt.scatter(x1,y1,marker="p',color='m'))

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/430269.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

计算机网络-网络安全(二)

1.应用层安全协议&#xff1a; S-HTTP或SHTTP&#xff08;Sec HTTP&#xff09;&#xff0c;安全超文本传输协议&#xff0c;是HTTP扩展&#xff0c;使用TCP的80端口。HTTPS&#xff1a;HTTPSSL&#xff0c;使用TCP的443端口。和TLS&#xff08;传输层安全标准&#xff09;是双…

Linux conntrack和iptables技术解析

Linux虚拟文件系统管理技术 1. netfilter解析1.1 netfilter的基础原理1.2 netfilter的相关hook 2. conntrack解析2.1 conntrack的基础原理2.2 conntrack的表记录解析 3. iptables解析3.1 iptables基础原理3.2 融合conntrack表的iptables规则 4. 疑问和思考4.1 conntrack和iptab…

从零开始学单片机,该怎么入门?

从零开始学单片机&#xff0c;该怎么入门&#xff1f; 在开始前我分享下我的经历&#xff0c;我刚入行时遇到一个好公司和师父&#xff0c;给了我机会&#xff0c;一年时间从3k薪资涨到18k的&#xff0c; 我师父给了一些 电气工程师学习方法和资料&#xff0c;让我不断提升自己…

神经网络推理优化方法总结

&#x1f380;个人主页&#xff1a; https://zhangxiaoshu.blog.csdn.net &#x1f4e2;欢迎大家&#xff1a;关注&#x1f50d;点赞&#x1f44d;评论&#x1f4dd;收藏⭐️&#xff0c;如有错误敬请指正! &#x1f495;未来很长&#xff0c;值得我们全力奔赴更美好的生活&…

C语言操作符详解(一)

一、操作符的分类 • 算术操作符&#xff1a; 、- 、* 、/ 、% • 移位操作符:<< >> • 位操作符: & | ^ • 赋值操作符: 、 、 - 、 * 、 / 、% 、<< 、>> 、& 、| 、^ • 单⽬操作符&#xff1a; &#xff01;、、--、&、*、、…

Android Studio开发(一) 构建项目

1、项目创建测试 1.1 前言 Android Studio 是由 Google 推出的官方集成开发环境&#xff08;IDE&#xff09;&#xff0c;专门用于开发 Android 应用程序。 基于 IntelliJ IDEA: Android Studio 是基于 JetBrains 的 IntelliJ IDEA 开发的&#xff0c;提供了丰富的功能和插件…

[Redis]——Spring整合Redis(SpringDataRedis)

⭐准备工作&#xff1a; 确保Redis服务已启动idea开发环境 ⭐Redis整合步骤&#xff1a; 1.pom文件引入依赖 2.yml文件配置连接信息 3.修改Redis序列化方式 4.注入RedisTemplate 使用 小知识&#xff1a; Spring整合的Redis可以将Object对象自动序列化成字符串&#xff0…

数学建模【灰色关联分析】

一、灰色关联分析简介 一般的抽象系统,如社会系统、经济系统、农业系统、生态系统、教育系统等都包含有许多种因素&#xff0c;多种因素共同作用的结果决定了该系统的发展态势。人们常常希望知道在众多的因素中&#xff0c;哪些是主要因素&#xff0c;哪些是次要因素;哪些因素…

高级统计方法 第5次作业

作业评阅&#xff1a; 概念 1.问题 2.问题&#xff08;略&#xff09; 4.问题&#xff08;略&#xff09; &#xff08;a&#xff09;问题&#xff08;略&#xff09; 10%&#xff0c;忽略 X < 0.05和 X > 0.95的情况。 &#xff08;b&#xff09;问题&#xff08;略…

金田金業: 避险情绪骤升 黄金暴力拉升

现货黄金周一(3月4日)亚市早间开盘于2082美元/盎司&#xff0c;最高2119.86美元/盎司&#xff0c;最低2079.44美元/盎司&#xff0c;收盘2114.28美元/盎司&#xff0c;全天波幅约40美金&#xff0c;当日涨幅1.51%。 【基本面】 周一(3月4日)无重要数据公布&#xff0c;投资者关…

TPM引领智能制造新篇章:赋能企业转型升级

在智能制造日益成为工业发展主流趋势的今天&#xff0c;全面生产维护&#xff08;Total Productive Maintenance&#xff0c;简称TPM&#xff09;作为一种先进的管理理念和方法&#xff0c;正逐渐展现出其为企业实现智能制造赋能助力的巨大潜力。TPM不仅关注设备的维护和保养&a…

【机器学习】包裹式特征选择之递归特征添加法

&#x1f388;个人主页&#xff1a;豌豆射手^ &#x1f389;欢迎 &#x1f44d;点赞✍评论⭐收藏 &#x1f917;收录专栏&#xff1a;机器学习 &#x1f91d;希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出指正&#xff0c;让我们共同学习、交流进…

Leetcode刷题笔记题解(C++):232. 用栈实现队列

思路&#xff1a;双栈实现入队列和出队列的操作 //AB栈来实现队列 //A栈用来push 可以利用A栈获取到队列的back即A.top //B栈用来pop 如果要获取队列的top&#xff0c;可以先把A栈元素依次弹出依次压入B栈中&#xff0c;然后B.top就是队列的top&#xff0c;pop也类似 cla…

云原生学习

1. 高可用架构 1.1 架构图 Kubernetes是属于主从设备模型&#xff08;Master-Slave架构&#xff09;&#xff0c;即有Master节点负责核心的调度、管理和运维&#xff0c;Slave节点则执行用户的程序。在Kubernetes中&#xff0c;主节点一般被称为Master Node 或者 Head Node&am…

【C语言】Leetcode 206.反转链表

博主主页&#xff1a;17_Kevin-CSDN博客 收录专栏&#xff1a;《Leetcode》 题目 解决思路 思路一&#xff1a;翻转链表 struct ListNode* reverseList(struct ListNode* head) {if(head NULL){return NULL;}struct ListNode* n1 NULL,*n2 head,*n3 n2 -> next;while(…

手写分布式配置中心(三)增加实时刷新功能(短轮询)

要实现配置自动实时刷新&#xff0c;需要改造之前的代码。 服务端改造 服务端增加一个版本号version&#xff0c;新增配置的时候为1&#xff0c;每次更新配置就加1。 Overridepublic long insertConfigDO(ConfigDO configDO) {insertLock.lock();try {long id 1;List<Con…

【EI会议征稿通知】第六届人工智能技术与应用国际学术会议(ICAITA 2024)

第六届人工智能技术与应用国际学术会议(ICAITA 2024) 2024 6th International Conference on Artificial Intelligence Technologies and Applications 第六届人工智能技术与应用国际学术会议(ICAITA 2024)&#xff0c;由长春理工大学主办&#xff0c;长春理工大学电子信息工…

【Linux】Shell命令运行原理和权限详解

【Linux】Shell命令运行原理和权限详解 一、剩余指令的补充1.tar指令2.bc指令3.uname4.热键 二、Shell命令运行原理1.Shell2.为什么Linux不让用户直接使用kernel 三、Linux权限概念四、Linux权限管理1.文件访问的用户分类2.文件类型和访问权限&#xff08;1&#xff09;文件类型…

H3C PBR 实验

H3C PBR 实验 实验拓扑 ​​ 实验需求 按照图示配置 IP 地址&#xff0c;公司分别通过电信和联通线路接入互联网公司内网配置 RIP 互通&#xff0c;公网配置 OSPF 互通&#xff0c;R6上配置默认路由指向 R1&#xff0c;内网使用路由器模拟 PCR1 分别在电信和联通出口上配置…

【Python】进阶学习:pandas--info()用法详解

【Python】进阶学习&#xff1a;pandas–info()用法详解 &#x1f308; 个人主页&#xff1a;高斯小哥 &#x1f525; 高质量专栏&#xff1a;Matplotlib之旅&#xff1a;零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程&#x1f448; 希望得到您的订…