Vision Transformer:打破CNN垄断,全局注意力机制重塑计算机视觉范式

目录

引言

一、ViT模型的起源和历史

二、什么是ViT?

图像处理流程

图像切分

展平与线性映射

位置编码

Transformer编码器

分类头(Classification Head)

自注意力机制

注意力图

三、Coovally AI模型训练与应用平台 

四、ViT与图像分类

五、CNN与ViT对比

效率

提取特征的方式

数据需求

六、ViT用例和应用

图像分类

目标检测与分割

图像生成

多模态任务

七、ViT的挑战

大规模数据集的依赖

计算复杂度和内存消耗

长距离依赖建模的困难

八、总结


引言

ViT(Vision Transformer)是一种用于图像处理的深度学习模型,基于Transformer架构,该架构最初是为自然语言处理(NLP)任务设计的。ViT的提出打破了传统视觉神经网络(CNN)在计算机视觉中的地位主导,采用了Transformer的自注意力机制来处理图像。

0_Rtb7Jt6378xfe6Z1.png

随着Transformer在自然语言处理(NLP)领域的成功应用。在计算机视觉研究中,人们对视觉转换器 (ViT) 和多层感知器 (MLP) 的兴趣日益浓厚。

ViT的出现标志着计算机视觉模型的一次范式转变,它不再依赖于传统的卷积操作,而是通过Transformer的自注意力机制来处理图像数据。这一创新模型在多个大型图像分类任务中,超越了CNN的表现,并为计算机视觉带来了新的思路。

  • 参考论文:https://arxiv.org/pdf/2010.11929


一、ViT模型的起源和历史

以下是关于视觉转换器(Vision Transformer)和相关模型的表格,涵盖了从2017年Transformer的诞生到2021年ViT及其变种的重要发展:

screenshot_2025-02-10_11-18-27.png

这个表格展示了Transformer架构及其在视觉任务中的发展历程,从最初的NLP模型,到BERT、GPT-3等语言模型,再到DETR、ViT及其变种在计算机视觉领域的成功应用。


二、什么是ViT?

screenshot_2025-02-10_13-59-09.png

Vision Transformer (ViT) 模型架构是在ICLR 2021上作为会议论文发表的一篇研究论文中介绍的,该论文题为“An Image is Worth 16*16 Words: Transformers for Image Recognition at Scale”。它由Neil Houlsby、Alexey Dosovitskiy和Google Research Brain Team的另外10位作者开发和发布。

ViT的设计灵感来源于Transformer架构,最初Transformer的提出是为了处理NLP任务的序列数据(如文本),它通过自注意力捕捉机制来捕捉图像中各部分之间的全局依赖。ViT的关键创新在于,将图像数据也视为一个“序列”,而通过Transformer的自注意力机制来捕捉图像中各部分之间的全局依赖。

  • 图像处理流程

ViT将输入图像分解几个固定大小的块(patches),每个块可以扣一个“图像的令牌”,然后对每个块进行展平(flatten)操作,将每个块转化为一个保护。这些处理会被形成Transformer模型,通过自注意力机制进行处理,捕获图像各部分的全局关联。

具体流程如下: 

图像切分

将输入图像(例如大小为𝐻×𝑊的RGB图像)划分为多个不重叠的小块(patches),小块的尺寸通常设置𝑃×𝑃。

展平与线性映射

每个𝑃×𝑃块的大小被展平为一个一维,大小为𝑃²×𝑃,其中C是每个图像块的通道数(例如RGB三通道)。接着,通过一个线性层(又称为投影层)进行放大器映射到模型所需的维度(通常是与Transformer模型中隐藏状态相同的维度)。

位置编码

由于Transformer本身不具备空间信息的处理能力,ViT在图像块的支持上加上位置编码(Positional Encoding),以保留图像的空间结构。

Transformer编码器

这些图像块的处理(包括位置编码)作为输入确定Transformer编码器。Transformer通过自注意力机制最终处理这些输入,生成的特征表示。

分类头(Classification Head

通过一个全连接层(Fully Connected Layer)将Transformer输出的特征映射到目标类别空间,完成分类任务。

  • 自注意力机制

在ViT中,最核心的部分是自注意力机制。它通过计算输入关注之间的相关性来决定每个输入关注对其他关注的程度。简单地说,自注意力机制使得每个图像块不仅可以考虑其自身的信息,还可以从图像中的其他区域获取信息。这种全局依赖的建模对于复杂的视觉任务关系至关重要。

0_0KPEV8QidHkteKeY.png

因此,自注意力机制会计算输入数据的加权和,其中权重是根据输入特征之间的相似性计算的。这使得模型能够更加重视相关的输入特征,从而帮助它捕获输入数据中更具信息性的表示。

所以,自注意力机制(Self-Attention)使得ViT能够在图像中建模各个区域之间的长距离依赖,而这正是ViT相对于传统卷积神经网络(CNN)的一个关键优势。

  • 注意力图

在ViT的多头自注意力(Multi-Head Self-Attention,MHSA)机制中,每个输入的图像块(Patch)都会与其他图像块进行关联,并分配不同的注意力权重。

screenshot_2025-02-10_11-19-24.png

ViT的注意力图通常来自自注意力权重矩阵,该矩阵存储了所有图像块之间的注意力分布。

在ViT的每一层,注意力权重由Softmax(Q·Kᵀ/√d_k)计算得出:

screenshot_2025-02-10_11-25-10.png

计算出的Softmax(Q·Kᵀ/√d_k)形成一个𝑁×𝑁的矩阵,表示每个图像块(Patch)对其他块的注意力分布。

screenshot_2025-02-10_11-24-07.png

注意力图本质上就是这些权重的可视化,我们可以将注意力图可视化为热图网格,其中每个热图代表给定标记与所有其他标记之间的注意力权重。热图中像素的颜色越亮,相应标记之间的注意力权重就越高。通过分析注意力图,我们可以深入了解图像的哪些部分对于手头的分类任务最重要。


三、Coovally AI模型训练与应用平台 

Coovally AI模型训练与应用平台,它整合了整合30+国内外开源社区1000+模型算法。  

screenshot_2025-02-10_14-25-15.png

平台已部署ViT系列模型算法

在Coovally平台上,无需配置环境、修改配置文件等繁琐操作,一键另存为我的模型,上传数据集,即可使用ViT等热门模型进行训练与结果预测,全程高速零代码而且模型还可分享与下载,满足你的实验研究与产业应用。

screenshot_2025-02-10_14-25-46.png


四、ViT与图像分类

图像分类是计算机视觉领域的一项基本任务,涉及根据图像内容为图像分配标签。ViT是专门为了图像分类任务之一而设计的深度学习模型。多年来,像YOLOv7这样的深度CNN一直是用图像分类的SOTA方法。

然而,随着Transformer架构在自然语言处理(NLP)任务中的成功,研究人员将Transformer模型引入图像分类任务,ViT就是其中的重要成果。

图片

计算机视觉研究表明,当使用足够量的数据进行预训练时,ViT模型至少与ResNet模型一样强大。

其他论文表明,Vision Transformer模型在隐私保护图像分类方面具有巨大潜力,并且在抗攻击性和分类准确性方面优于SOTA方法。


五、CNN与ViT对比

与CNN相比,Vision Transformer(ViT)取得了显著的成果,同时获得的预训练计算资源却少得多。与CNN相比,Vision Transformer(ViT)表现出的归纳偏差通常较弱,导致在较小的数据集上进行训练时更加依赖模型正则化或数据增强(AugReg)。

screenshot_2025-02-10_14-14-37.png

  • 效率

CNN通过局部感受野进行特征提取,计算量随着网络层数量的增加而增加。而ViT由于使用自注意力机制,其计算复杂度通常为在2),其中N是输入序列的长度(即图像块的数量)。因此,ViT在处理大图像时,计算量可能会比CNN大,但随着硬件性能的提升,Transformer架构也逐渐能够在大型数据集上训练高效。

  • 提取特征的方式

CNN通过拓扑操作进行特征提取,注重局部特征的学习,尤其擅长捕获空间的局部信息。而ViT则通过自注意力机制进行全局特征的学习,能够捕获图像中不同区域之间的长距离依赖。对于复杂的图像任务,ViT的全局建模能力通常能够超越CNN的局部建模。

screenshot_2025-02-10_14-13-59.png

  • 数据需求

CNN模型一般能够在较小的数据集上取得训练的表现,但ViT通常需要大量的数据才能进行有效的。在数据量较小的情况下,ViT的性能可能不如 CNN。因此,ViT在数据量的任务中表现更为重要。虽然Transformer架构已成为涉及自然语言处理(NLP)的任务的最高标准,但其与计算机视觉(CV)相关的用例仍然很少。在许多计算机视觉任务中,将注意力机制与卷积神经网络(CNN)结合使用,或者在保留CNN整体结构的同时替代CNN的某些方面。流行的图像识别模型包括ResNet、VGG、YOLOv3、YOLOv7或YOLOv8以及Segment Anything(SAM)。

screenshot_2025-02-10_14-10-04.png

然而,这种对CNN的依赖并不是强制性的,直接应用于图像块序列的纯变换器可以在图像分类任务中发挥出色的作用。


六、ViT用例和应用

ViT在流行的图像识别任务中有着广泛的应用,例如物体检测、分割、图像分类和动作识别。此外,ViT在生成建模和多模态任务中也有广泛应用,包括视觉基础任务、视觉问答和视觉推理等。

  • 图像分类

大规模分类:Google的ViT模型在JFT-300M等超大数据集上训练后,分类精度超越ResNet。

细粒度分类:如鸟类或植物物种识别,ViT可区分细微纹理差异(如羽毛颜色、叶片形状)。

  • 目标检测与分割

自动驾驶:ViT用于道路场景中车辆、行人检测,利用全局上下文减少遮挡误判。

医疗影像:分割肿瘤区域时,ViT的长程依赖建模能识别病灶边缘的扩散特征。

  • 图像生成

艺术创作:生成风格化图像时,ViT的自注意力机制能协调全局色彩与局部笔触。

数据增强:为小样本任务生成逼真训练数据(如罕见病医学影像)。

  • 多模态任务

CLIP模型:OpenAI的CLIP利用ViT提取图像特征,与文本编码对齐,支持零样本图像检索。

视频理解:将视频帧序列输入ViT,结合时间建模(如TimeSformer)分析动作时序。

ViT通过其全局建模能力,正在重塑计算机视觉领域,未来或与CNN形成互补,成为多模态智能系统的核心组件。


七、ViT的挑战

虽然ViT在多个任务中取得了优异的成绩,但它也面临一些挑战,包括与架构设计、泛化、鲁棒性、可解释性和效率相关的问题。

  • 大规模数据集的依赖

ViT在训练时大量的数据才能发挥其优势。由于ViT基于Transformer架构,而Transformer模型在自然语言处理(NLP)中表现出色,主要是因为它能够从大量的文本数据中学习到丰富的上下文信息。在任务关系中,ViT也需要大量的图像数据来学习有效的特征,尤其是全局。

  • 计算复杂度和内存消耗

ViT的计算复杂度较高,尤其是在处理大图像时。Transformer的自注意力机制需要计算所有图像块之间的相似程度,这会导致时间和内存的消耗呈平方级增长。特别是在图像分割成更多小块时,计算的成本将显著增加。

  • 长距离依赖建模的困难

虽然ViT的自注意力机制能够建模全局的长距离依赖,但在某些复杂的视觉任务中,ViT可能仍然难以捕捉图像中的长距离空间信息,特别是在较浅的层次中。

总体而言,虽然ViT的Transformer架构是视觉处理任务的一个有前途的选择,但在ImageNet等中型数据集上从头开始训练时,ViT的性能仍然不如类似规模的CNN替代方案(例如ResNet)。


八、总结

ViT模型的提出标志着计算机视觉领域的一次重要突破,展现了Transformer架构在图像处理中的潜力。相比于传统的CNN,ViT通过自注意力机制实现了全局建模,能够捕捉更复杂的图像特征,尤其在大规模数据集上的表现非常优异。尽管ViT在计算复杂度和数据需求上存在一些挑战,但随着硬件的进步和优化算法的提出,ViT无疑会成为未来计算机视觉领域的一个重要方向。

随着研究的深入,我们有理由相信,ViT和Transformer的变种将在未来的视觉任务中发挥更大的作用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/968251.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

自动驾驶---如何打造一款属于自己的自动驾驶系统

在笔者的专栏《自动驾驶Planning决策规划》中,主要讲解了行车的相关知识,从Routing,到Behavior Planning,再到Motion Planning,以及最后的Control,笔者都做了相关介绍,其中主要包括算法在量产上…

vulnhub 靶场 —— NullByte

免责声明 本博客文章仅供教育和研究目的使用。本文中提到的所有信息和技术均基于公开来源和合法获取的知识。本文不鼓励或支持任何非法活动,包括但不限于未经授权访问计算机系统、网络或数据。 作者对于读者使用本文中的信息所导致的任何直接或间接后果不承担任何…

Unity做2D小游戏2------创建地形和背景

我是跟着这个up主做的:【unity/2d/超基础】教你做一款2d横版游戏 打开Unity Hub后,点击项目--新项目,进入下面的界面,可以根据想要做的项目选择对应的模型,我现在要做2D小游戏,所以选择第一个2D核心模板。…

判断函数是否为react组件或lazy包裹的组件

function Modal(){return <p>123</p> } 实参里填入函数名,是false 实参里填入标签形式的函数,是true isValidElement(Modal)//false isValidElement(<Modal></Modal>)//true 官方说明 isValidElement – React 中文文档 但是官方并不建议用isValidE…

Vue笔记(八)

一、Pinia &#xff08;一&#xff09;手动添加Piaia到Vue项目 1.安装Pinia&#xff1a;使用包管理器进行安装&#xff0c;在项目目录下运行 npm install pinia 或 yarn add pinia &#xff0c;为项目引入Pinia状态管理库。 2.创建Pinia实例&#xff1a;在项目的JavaScript代…

如何将3DMAX中的3D文件转换为AutoCAD中的2D图形?

大家好,今天我们来探讨一下如何将3DMAX中的3D文件转换为AutoCAD中的2D图形。无论是出于设计交流、施工准备还是其他实际需求,这种转换在工程设计领域都是一项非常实用的技能。接下来,我将为大家详细介绍几种实现这一转换的方法,帮助大家轻松跨越3D与2D设计之间的鸿沟。让我…

javaEE-11.javaScript入门

目录 一.什么是javaScript 二.快速实现 三.JS引入方式 1.行内引入: 2.内部引入: 3.外部引入: 四.基础语法 1.变量 变量命名规则: 2.数据类型 3.运算符 五.JS对象 1.数组 创建数组: 2.操作数组 3.函数 函数注意事项: 函数参数: 4.对象 1.使用字面量 创建对象:…

机器学习 - 进一步理解最大似然估计和高斯分布的关系

一、高斯分布得到的是一个概率吗&#xff1f; 高斯分布&#xff08;也称为正态分布&#xff09;描述的是随机变量在某范围内取值的概率分布情况。其概率密度函数&#xff08;PDF&#xff09;为&#xff1a; 其中&#xff0c;μ 是均值&#xff0c;σ 是标准差。 需要注意的是…

SaaS+AI应用架构:业务场景、智能体、大模型、知识库、传统工具系统

SaaSAI应用架构&#xff1a;业务场景、智能体、大模型、知识库、传统工具系统 大家好&#xff0c;我是汤师爷~ 在SaaS与AI应用的演进过程中&#xff0c;合理的架构设计至关重要。本节将详细介绍其五个核心层次&#xff1a; 业务场景层&#xff1a;发现和确定业务场景智能体层…

三、k8s pod详解

pod详解的相关的基础知识和初始化容器&#xff0c;以及私有化的镜像仓库*。 pod进阶&#xff1a;pod的状态&#xff0c;pod的探针 pod的详解&#xff1a; pod是k8s集群管理的最小单位&#xff0c;最小的资源组件&#xff0c;也是最小化运行容器的资源对象。 容器运行在pod里…

OpenCV 相机标定流程指南

OpenCV 相机标定流程指南 前置准备标定流程结果输出与验证建议源代码 OpenCV 相机标定流程指南 https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html https://learnopencv.com/camera-calibration-using-opencv/ 前置准备 制作标定板&#xff1a;生成高精度棋…

【Windows】PowerShell 缓存区大小调节

PowerShell 缓存区大小调节 方式1 打开powershell 窗口属性调节方式2&#xff0c;修改 PowerShell 配置文件 方式1 打开powershell 窗口属性调节 打开 CMD&#xff08;按 Win R&#xff0c;输入 cmd&#xff09;。右键标题栏 → 选择 属性&#xff08;Properties&#xff09;…

127,【3】 buuctf [NPUCTF2020]ReadlezPHP

进入靶场 吓我一跳 查看源码 点击 审计 <?php// 定义一个名为 HelloPhp 的类&#xff0c;该类可能用于执行与日期格式化相关的操作 class HelloPhp {// 定义一个公共属性 $a&#xff0c;用于存储日期格式化的模板public $a;// 定义一个公共属性 $b&#xff0c;用于存储…

问题:通过策略模式+工厂模式+模板方法模式实现ifelse优化

项目场景&#xff1a; 提示&#xff1a;这里简述项目相关背景&#xff1a; 示例&#xff1a;商城系统有会员系统&#xff0c;不同会员有不同优惠程度&#xff0c;普通会员不优惠&#xff1b;黄金会员打8折&#xff1b;白金会员优惠50元&#xff0c;再打7折&#xff1b; 问题描…

Android Studio2024版本安装环境SDK、Gradle配置

一、软件版本&#xff0c;安装包附上 &#x1f449;android-studio-2024.1.2.12-windows.exe&#x1f448; &#x1f449;百度网盘Android Studio安装包&#x1f448; &#xff08;若下载连链接失效可去百度网盘链接下载&#xff09; 二、软件安装过程 ​ ​ ​ 三、准备运行…

Leetcode - 149双周赛

目录 一、3438. 找到字符串中合法的相邻数字二、3439. 重新安排会议得到最多空余时间 I三、3440. 重新安排会议得到最多空余时间 II四、3441. 变成好标题的最少代价 一、3438. 找到字符串中合法的相邻数字 题目链接 本题有两个条件&#xff1a; 相邻数字互不相同两个数字的的…

使用 meshgrid函数绘制网格点坐标的原理与代码实现

使用 meshgrid 绘制网格点坐标的原理与代码实现 在 MATLAB 中&#xff0c;meshgrid 是一个常用函数&#xff0c;用于生成二维平面网格点的坐标矩阵。本文将详细介绍如何利用 meshgrid 函数生成的矩阵绘制网格点的坐标&#xff0c;并给出具体的代码实现和原理解析。 实现思路 …

【AI赋能】蓝耘智算平台实战指南:3步构建企业级DeepSeek智能助手

蓝耘智算平台实战指南&#xff1a;3步构建企业级DeepSeek智能助手 引言&#xff1a;AI大模型时代的算力革命 在2025年全球AI技术峰会上&#xff0c;DeepSeek-R1凭借其开源架构与实时推理能力&#xff0c;成为首个通过图灵测试的中文大模型。该模型在语言理解、跨模态交互等维…

Mac(m1)本地部署deepseek-R1模型

1. 下载安装ollama 直接下载软件&#xff0c;下载完成之后&#xff0c;安装即可&#xff0c;安装完成之后&#xff0c;命令行中可出现ollama命令 2. 在ollama官网查看需要下载的模型下载命令 1. 在官网查看deepseek对应的模型 2. 选择使用电脑配置的模型 3. copy 对应模型的安…

第七节 文件与流

基本的输入输出&#xff08;iostream&#xff09; C标准库提供了一组丰富的输入/输出功能&#xff0c;C的I/O发生在流中&#xff0c;流是字节序列。如果字节流是从设备&#xff08;键盘、磁盘驱动器、网络连接等&#xff09;流向内存&#xff0c;叫做输入操作。如果字节流是从…