1 推荐系统概述

推荐系统概述

  • 1 推荐系统的意义
    • 平台方
    • 信息生产者(物品)
    • 信息消费者(用户)
    • 推荐和搜索的区别
  • 2 推荐系统架构
    • 系统架构
    • 算法架构
  • 3 推荐系统技术栈
    • 算法
      • 画像层
      • 召回/粗排
      • 精排
      • 重排序
    • 工程

1 推荐系统的意义

信息生产者(平台方) -> 平台(推荐系统) <- 消费者(用户)

平台方

  1. 平台方为信息生产者提供物品展示位置,然后吸引用户来平台寻找感兴趣的物品。“流量”的产生对商家物品的展示,用户的浏览、观看、下单等行为
  2. 推荐系统改变了传统电商的树状拓扑结构,变成了更容易让流量流通的网络拓扑结构,给每个商品增加了如何和展示机会。如,传统的需要按照每个大类、小类一个个点击去筛选物品;而推荐系统则直接提供个性化推荐,让你直达感兴趣的商品。
  3. 推荐系统:最大限度吸引用户、留存用户、增加用户粘性、提高用户转换率,达到平台商业目标增长的目的。如(视频平台)点击率、完播率、内置广告点击率;(购物平台)商品点击率、用户转换率:点击->购买。

信息生产者(物品)

  1. 物品的长尾性和二八效应严重,需要推荐系统挖掘出那 80% 的长尾物品,推荐给有需要的用户。
  2. 推荐系统对长尾物品的曝光,对信息生产者(如视频平台的作者、商家)也是一种激励。
  3. 推荐系统的匹配需求和供给能力也成为衡量一个平台的重要标准,决定了该平台的商业价值。

信息消费者(用户)

提高用户体验(基本+惊喜):满足目标明确用户的基本要求,给没有明确需求用户以惊喜推荐。最终都可能提高平台的转换率。

推荐和搜索的区别

推荐搜索
用户意图不明确明确
个性化程度
优化目标广泛,如用户停留时长、点击、多样性、拼分等通常指标:归一化折损累计收益(NDCG),Precision 和 Recall(精确率和召回率)
马太效应和长尾理论也存在马太效应,长尾性非常明显存在马太效应(靠后的很少被关注)

2 推荐系统架构

系统架构

推荐系统架构,从数据驱动角度,可以分为如下三层:

  • 离线层:不用实时数据,不提供实时响应(批量完成,对数据量和算法复杂度限制少);
  • 近线层:使用实时数据,不保证实时响应;
  • 在线层:使用实时数据,保证实时在线服务(和用户交互,有实时性要求,限制算法复杂性和处理数据量);

网飞的设计架构如下图:
在这里插入图片描述
整个数据部分是一整个链路,包括三块:

  • 客户端及服务器实时数据处理: 记录用户行为,如看了哪些内容、和哪些内容交互,停留时间,使用设备,发生时间等(通过埋点)。
  • 流处理平台准实时数据处理:记录一些准实时数据,如用户行为数据。
  • 大数据平台离线数据处理:一些数据操作。

这三个模块具体来说,

  • 离线层,
    1. 数据处理
    2. 特征工程、离线特征计算
    3. 离线模型的训练
  • 近线层
  • 在线层,面向用户,需要考虑响应时延;用户请求发送到在线层,在线层快速返回结果
    1. 模型在线服务,包括快速召回和排序
    2. 在线特征快速处理拼接::根据传入的用户ID和场景,快速读取特征和处理
    3. AB实验或者分流:根据不同用户采用不一样的模型,比如冷启动用户和正常服务模型;
    4. 运筹优化和业务干预:比如要对特殊商家流量扶持、对某些内容限流;

算法架构

  • 召回
  • 粗排
  • 精排
  • 重排

3 推荐系统技术栈

算法

架构: 物料库 -> 召回 -> 粗排 -> 精排 -> 重排

  • 召回:要求轻量低延迟,量大(多采用多路召回)
  • 粗排:精排前过滤,兼顾精准性和低延迟
  • 精排:对粗排结果的候选集进行打分和排序,要在最大时延允许下保证打分的精准性
  • 重排:基于运营策略、多样性、上下文重新进行微调
  • 混排:多个业务都想在 feed 流上曝光,则需要混排。如推荐流中插入广告(基于规则策略,例如广告定坑)、视频流汇总插入图文(强化学习)

画像层

物料库:如何绘制一个用户画像和商品画像。用户画像:关于年龄、爱好等。商品画像:形式多样,如一个内容画像的内容理解可以包含,通过内容本身理解、通过用户理解。

其中涉及到技术包括:

  • 文本理解
  • 关键词标签
  • 内容理解
  • 知识图谱

召回/粗排

多路召回

  • 考虑用户层面
  • 考虑系统层面
  • 系统多样性内容分发
  • 可解释性推荐一部分召回是有明确推荐理由的

其中涉及到的技术包括:

  • 经典召回模型
  • 序列召回模型
  • 用户序列拆分
  • 知识图谱
  • 图模型

精排

其中涉及到的技术包括:

  • 特征交叉模型
  • 序列模型
  • 多模态信息融合
  • 多任务学习
  • 强化学习
  • 跨域推荐

重排序

经典算法有:MRR、DPP、RNN 等

工程

  • 语言:python 、 C++、Java
  • 机器学习框架:Tensorflow、Pytorch
  • 数据分析工具:Pandas、Hadoop、Spark

参考文献:

  1. FunRec 第一章推荐系统概述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/967434.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

torch_bmm验算及代码测试

文章目录 1. torch_bmm2. pytorch源码 1. torch_bmm torch.bmm的作用是基于batch_size的矩阵乘法,torch.bmm的作用是对应batch位置的矩阵相乘&#xff0c;比如&#xff0c; mat1的第1个位置和mat2的第1个位置进行矩阵相乘得到mat3的第1个位置mat1的第2个位置和mat2的第2个位置…

汽车与AI深度融合:CES Asia 2025前瞻

在科技飞速发展的当下&#xff0c;汽车与AI的融合正成为行业变革的关键驱动力。近日&#xff0c;吉利、极氪、岚图、智己等多家车企纷纷官宣与DeepSeek模型深度融合&#xff0c;其中岚图知音更是将成为首个搭载该模型的量产车型&#xff0c;这无疑是汽车智能化进程中的重要里程…

Racecar Gym 总结

1.Racecar Gym 简介 Racecar Gym 是一个基于 PyBullet 物理引擎 的自动驾驶仿真平台&#xff0c;提供 Gymnasium&#xff08;OpenAI Gym&#xff09; 接口&#xff0c;主要用于强化学习&#xff08;Reinforcement Learning, RL&#xff09;、多智能体竞速&#xff08;Multi-Ag…

jupyterLab插件开发

jupyter lab安装、配置&#xff1a; jupyter lab安装、配置教程_容器里装jupyterlab-CSDN博客 『Linux笔记』服务器搭建神器JupyterLab_linux_布衣小张-腾讯云开发者社区 Jupyter Lab | 安装、配置、插件推荐、多用户使用教程-腾讯云开发者社区-腾讯云 jupyterLab插件开发教…

1.Excel:某停车场计划调整收费标准❗(13)

目录 函数VLOOKUP ROUNDUP/ROUNDDOWN函数 NO1​ NO2会计专用类型​ NO3收费标准VLOOKUP​ NO4停放时间&#xff08;天&#xff09;​ NO5金额roundup/rounddown​ ​NO6汇总行​ NO7单元格突出显示​ NO8数据透视表​ 函数VLOOKUP VLOOKUP(收费标准!A3:B5 F4&#xf…

elasticsearch安装插件analysis-ik分词器(深度研究docker内elasticsearch安装插件的位置)

最近在学习使用elasticsearch&#xff0c;但是在安装插件ik的时候遇到许多问题。 所以在这里开始对elasticsearch做一个深度的研究。 首先提供如下链接&#xff1a; https://github.com/infinilabs/analysis-ik/releases 我们下载elasticsearch-7-17-2的Linux x86_64版本 …

Git 分布式版本控制工具使用教程

1.关于Git 1.1 什么是Git Git是一款免费、开源的分布式版本控制工具&#xff0c;由Linux创始人Linus Torvalds于2005年开发。它被设计用来处理从很小到非常大的项目&#xff0c;速度和效率都非常高。Git允许多个开发者几乎同时处理同一个项目而不会互相干扰&#xff0c;并且在…

VMware 虚拟机 ubuntu 20.04 扩容工作硬盘

一、关闭虚拟机 关闭虚拟机参考下图&#xff0c;在vmware 调整磁盘容量 二、借助工具fdisk testubuntu ~ $ df -h Filesystem Size Used Avail Use% Mounted on udev 1.9G 0 1.9G 0% /dev tmpfs 388M 3.1M 385M 1% /run /dev/sda5 …

使用python tk 做UI,实现的步骤如下:

Update UI 先~ 使用python tk 做UI,实现的步骤如下:1、点击初始化按钮后,Robot 回到Home 位置,位置到达后发送Home 给视觉,UI更新Robot位置为 Home 2、点击基准按钮后,Robot 走到POS1,位置到达后发送POS1+++当前位置(Ref_POS1_X、Ref _POS1_Y、Ref _POS1_R)给视觉,UI更…

头条百度批量采集软件说明文档

旧版说明文档《头条号文章批量采集软件4.0版本说明文档&#xff01;头条/微头条文章批量采集》 头条的采集软件已经更新了好多个版本了&#xff0c;一直没有做详细的介绍文档&#xff0c;最近更新了一些功能进去&#xff0c;一块来写一下说明文档。 1、主界面 2、头条作者采集…

Wpf美化按钮,输入框,下拉框,dataGrid

Wpf美化按钮&#xff0c;输入框&#xff0c;下拉框&#xff0c;dataGrid 引用代码后 引用资源 <ControlTemplate x:Key"CustomProgressBarTemplate" TargetType"ProgressBar"><Grid><Border x:Name"PART_Track" CornerRadius&q…

DeepSeek从入门到精通:全面掌握AI大模型的核心能力

文章目录 一、DeepSeek是什么&#xff1f;性能对齐OpenAI-o1正式版 二、Deepseek可以做什么&#xff1f;能力图谱文本生成自然语言理解与分析编程与代码相关常规绘图 三、如何使用DeepSeek&#xff1f;四、DeepSeek从入门到精通推理模型推理大模型非推理大模型 快思慢想&#x…

从MySQL优化到脑力健康:技术人与效率的双重提升

文章目录 零&#xff1a;前言一&#xff1a;MySQL性能优化的核心知识点1. 索引优化的最佳实践实战案例&#xff1a; 2. 高并发事务的处理机制实战案例&#xff1a; 3. 查询性能调优实战案例&#xff1a; 4. 缓存与连接池的优化实战案例&#xff1a; 二&#xff1a;技术工作者的…

大语言模型实践——基于现有API的二次开发

基于现有的API平台做一些实用的AI小应用。 API服务商&#xff1a;阿里云百炼 云服务器&#xff1a;阿里云&#xff08;2核2GB&#xff09; 部署框架&#xff1a;gradio 调用框架&#xff1a;openai 语言&#xff1a;Python &#xff08;注&#xff1a;若搭建网站或API接口…

Windows逆向工程入门之进制拓展(BIN OCT DEC HEX)

公开视频 -> 链接点击跳转公开课程博客首页 -> ​​​链接点击跳转博客主页 目录 一、进制基础 1. 什么是进制&#xff1f; 二、二进制、八进制、十六进制的定义和规则 1. 二进制 (Binary) 示例&#xff1a; 2. 八进制 (Octal) 示例&#xff1a; 3. 十六进制 (H…

【数据结构】_堆的实现

目录 1. 堆的实现 1.1 Heap.h 1.2 Heap.c 1.3 Test_Heap.c 专栏前文中&#xff0c;已经介绍了入堆及向上调整算法&#xff0c;出堆及向下调整算法&#xff0c;详情见下文&#xff1a; 【数据结构】_堆的结构及向上、向下调整算法-CSDN博客文章浏览阅读352次&#xff0c;点…

重启电脑之后vscode不见了

某天重启电脑之后发现vscode被删除 双击发现是 后面追溯到文件夹下面发现有一个文件夹的名字叫_ 把这个文件夹打开发现之前的包全在这里面 只需要把这个包里面的文件全部移到上一级即可

高级加密标准AES候选算法之一Crypton

目录 (1)轮密钥加 (2)列混合变换 (3)字节替代变换 (4)字节置换变换 Crypton的加密算法 Crypton的解密算法 密钥扩展算法 高级加密标准AES候选算法之一Crypton Crypton算法是由Chae Hoon Lim于1998年设计的,它是被接受为AES侯选者的15种分组密码之一。该算法是…

2025最新主流深度学习算法全解析

深度学习&#xff1a;开启智能时代的钥匙 在当今数字化时代&#xff0c;深度学习无疑是人工智能领域中最为耀眼的明星。它如同一把神奇的钥匙&#xff0c;开启了智能时代的大门&#xff0c;让计算机从简单的数据处理迈向了复杂的智能决策。深度学习通过构建具有多个层次的神经网…

51单片机(国信长天)矩阵键盘的基本操作

在CT107D单片机综合训练平台上&#xff0c;首先将J5处的跳帽接到1~2引脚&#xff0c;使按键S4~S19按键组成4X4的矩阵键盘。在扫描按键的过程中&#xff0c;发现有按键触发信号后(不做去抖动)&#xff0c;待按键松开后&#xff0c;在数码管的第一位显示相应的数字:从左至右&…