Racecar Gym 总结

1.Racecar Gym 简介

Racecar Gym 是一个基于 PyBullet 物理引擎 的自动驾驶仿真平台,提供 Gymnasium(OpenAI Gym) 接口,主要用于强化学习(Reinforcement Learning, RL)、多智能体竞速(Multi-Agent Racing) 和 计算机视觉(Computer Vision) 研究。该环境具备可扩展性、高度定制化和高性能物理仿真,广泛适用于自动驾驶、路径规划、多智能体交互等领域。

2.核心功能

(1)支持多种赛车环境

Racecar Gym 提供多个预设环境,以满足不同研究需求:

请添加图片描述

示例代码:创建 Racecar Gym 环境


import gymnasium as gym
import racecar_gym
# 创建 Racecar Gym 环境
env = gym.make("RacecarGym-v0")
# 重置环境并获取初始状态
obs, info = env.reset()
# 运行智能体
for _ in range(1000):
    action = env.action_space.sample()  # 随机采样动作
    obs, reward, done, truncated, info = env.step(action)  # 采取动作并获取新的环境状态
    
    if done:
        obs, info = env.reset()  # 重新初始化环境
env.close()  # 关闭环境

(2)多智能体(Multi-Agent)竞速支持

Racecar Gym 允许多个智能体在同一环境中运行,支持:

• 竞争模式(Competitive Racing):多个赛车相互竞争,以最快速度完成赛道。

• 协作模式(Cooperative Driving):智能体相互配合,以优化整体行驶路径。

• 混合模式(Mixed Mode):结合竞争与协作,适用于研究智能体交互策略。

示例代码:多智能体竞速


env = gym.make("RacecarGymMultiAgent-v0", num_agents=2)  # 创建包含 2 个智能体的环境
obs, info = env.reset()  # 重置环境,获取初始状态
for _ in range(1000):
    # 每个智能体执行随机动作
    actions = {agent_id: env.action_space.sample() for agent_id in env.agents}
    obs, rewards, done, truncated, info = env.step(actions)  # 执行动作
    if all(done.values()):  # 如果所有智能体都完成任务,则重置环境
        obs, info = env.reset()
   

(3)多传感器数据支持

Racecar Gym 提供**激光雷达(LiDAR)、摄像头(Camera)和惯性测量单元(IMU)**等传感器数据,增强智能体对环境的感知能力。

(a)激光雷达(LiDAR)

• 适用于避障、测距和地图构建。

• 提供 360° 环境信息,帮助智能体检测前方障碍物。

示例代码:启用 LiDAR

env = gym.make("RacecarGym-v0", use_lidar=True)  # 启用 LiDAR
obs, info = env.reset()
print(obs["lidar"])  # 输出 LiDAR 读数
(b)摄像头(Camera)

• 适用于视觉导航、目标检测等任务。

• 可结合计算机视觉技术进行赛道识别。

示例代码:处理摄像头图像

import cv2
frame = obs["camera"]  # 获取摄像头图像
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)  # 转换为灰度图
edges = cv2.Canny(gray, 50, 150)  # 进行边缘检测
cv2.imshow("Edges", edges)  # 显示边缘检测结果
cv2.waitKey(1)  # 保持窗口

(4)强化学习训练支持

Racecar Gym 兼容主流强化学习框架(Stable-Baselines3、RLlib),支持:

• PPO(Proximal Policy Optimization) - 适用于稳定训练

• SAC(Soft Actor-Critic) - 适用于连续控制任务

• TD3(Twin Delayed DDPG) - 适用于高精度控制

• DQN(Deep Q-Network) - 适用于离散动作控制

示例代码:PPO 训练 AI 赛车

from stable_baselines3 import PPO
env = gym.make("RacecarGym-v0")  # 创建 Racecar Gym 环境
model = PPO("MlpPolicy", env, verbose=1)  # 初始化 PPO 强化学习模型
model.learn(total_timesteps=200000)  # 训练 20 万步
# 让训练好的模型测试 AI 赛车
obs, info = env.reset()
for _ in range(1000):
    action, _states = model.predict(obs)  # 让 AI 预测最佳动作
    obs, reward, done, truncated, info = env.step(action)  # 执行动作
    if done:
        obs, info = env.reset()

3.可实现的项目方向

Racecar Gym 是一个基于 PyBullet 的 自动驾驶 & 竞速仿真环境,适用于:
• 自动驾驶 AI 训练
• AI 赛车
• 多智能体竞速仿真
• 路径规划 & 避障

3.1. 自动驾驶 AI 训练

项目目标
• 训练 AI 让赛车自主驾驶,优化加速、刹车、转向策略。
• 结合强化学习 + 计算机视觉 + LiDAR 进行环境感知。
• 使用 PPO、DDPG、SAC 进行训练,优化自动驾驶决策。

Step 1: 安装 Racecar Gym 及依赖

pip install racecar-gym stable-baselines3 opencv-python

安装 Racecar Gym 及 强化学习库 Stable-Baselines3,并安装 OpenCV 处理摄像头数据。

Step 2: 加载 RacecarGym 环境

import gymnasium as gym import racecar_gym

创建 RacecarGym 自动驾驶环境 env = gym.make(“RacecarGym-v0”) obs, info = env.reset() # 重置环境并获取初始状态

创建 RacecarGym 环境,用于强化学习 AI 自动驾驶训练。

Step 3: 计算机视觉感知赛道

摄像头图像进行赛道检测

import cv2

frame = obs[“camera”] # 获取摄像头画面 gray = cv2.cvtColor(frame,
cv2.COLOR_BGR2GRAY) # 转换为灰度图 edges = cv2.Canny(gray, 50, 150) # 进行边缘检测
cv2.imshow(“Edge Detection”, edges) # 显示边缘检测结果 cv2.waitKey(1) # 确保窗口持续显示

摄像头数据转换为灰度图,并进行 Canny 边缘检测,帮助 AI 识别赛道。

使用 LiDAR 传感器数据进行障碍物检测

lidar_data = obs[“lidar”] # 获取 LiDAR 数据 print(f"LiDAR Data:
{lidar_data}") # 输出 LiDAR 传感器数据

LiDAR 用于探测赛车前方障碍物,帮助 AI 做出转向或刹车决策。

Step 4: 训练 AI 自动驾驶

使用 DDPG(深度确定性策略梯度)

from stable_baselines3 import DDPG
#初始化 DDPG 模型
model = DDPG(“MlpPolicy”, env, verbose=1)
#开始训练,学习 50,000 步
model.learn(total_timesteps=50000)

DDPG 适用于连续控制任务(如赛车的油门 & 方向盘控制)。

使用 SAC(Soft Actor-Critic)

from stable_baselines3 import SAC

#初始化 SAC 模型
model = SAC(“MlpPolicy”, env, verbose=1)
#训练 100,000 步
model.learn(total_timesteps=100000)

SAC 适用于复杂环境下的 AI 决策训练,如 变道、避障等操作。

Step 5: 测试 AI 自动驾驶

obs, info = env.reset() # 重新初始化环境
for _ in range(1000): # 运行 1000 步
action, _states = model.predict(obs) # AI 预测最佳动作
obs, reward, done, truncated, info = env.step(action) # 执行动作

if done:  #如果赛车完成赛道,则重置
    obs, info = env.reset()

AI 训练后自动驾驶测试,检查是否学会正确驾驶策略。

3.2. AI 赛车

项目目标
• 优化 AI 赛车驾驶策略,提高速度 & 避免碰撞。
• 结合 强化学习 + 轨迹优化 进行训练。

Step 1: 加载 RacecarGym 进行赛车训练

import gymnasium as gym import racecar_gym
#载入赛车仿真环境
env = gym.make(“RacecarGym-v0”) obs, info = env.reset()

Step 2: 训练 AI 赛车

使用 PPO 训练 AI 赛车

from stable_baselines3 import PPO
#初始化 PPO 模型
model = PPO(“MlpPolicy”, env, verbose=1)
#训练 50,000 步
model.learn(total_timesteps=50000)

📌 PPO(Proximal Policy Optimization)适用于轨迹优化,可用于 学习最佳赛车路线。

📌 使用 DDPG 进行连续控制

from stable_baselines3 import DDPG
#初始化 DDPG 模型
model = DDPG(“MlpPolicy”, env, verbose=1)
#训练 50,000 步
model.learn(total_timesteps=50000)

📌 DDPG 适用于控制油门 & 转向角度。

Step 3: 视觉感知赛道

import cv2

frame = obs[“camera”] # 获取摄像头画面
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # 转换为灰度图
edges = cv2.Canny(gray, 50, 150) #进行边缘检测
cv2.imshow(“Edge Detection”, edges) # 显示边缘检测结果 cv2.waitKey(1)

📌 赛车 AI 需要感知赛道边界,确保不会偏离轨道。

Step 4: 测试 AI 赛车

obs, info = env.reset() for _ in range(1000):
action, _states = model.predict(obs)
obs, reward, done, truncated, info = env.step(action)

if done:
obs, info = env.reset()

AI 训练后进行竞速测试,检查是否学会正确驾驶策略。

3.3. 多智能体竞速

项目目标
• 训练 多个 AI 赛车 在同一赛道竞速。
• 研究 多智能体强化学习(MARL)在赛车竞速中的应用。

Step 1: 加载多智能体竞速环境

#创建多智能体竞速环境(2 辆赛车)
env = gym.make(“RacecarGymMultiAgent-v0”, num_agents=2) obs, info = env.reset()

Step 2: 训练多智能体竞速 AI

使用 PPO 训练多智能体

from stable_baselines3 import PPO

model = PPO(“MlpPolicy”, env, verbose=1)
model.learn(total_timesteps=100000)

Step 3: 测试多智能体竞速

obs, info = env.reset() for _ in range(1000):
actions = {agent: model.predict(obs[agent]) for agent in env.agents}
obs, rewards, done, truncated, info = env.step(actions)

if all(done.values()): # 所有赛车完成任务
obs, info = env.reset()

多个 AI 赛车同时训练,测试它们的竞速表现。

3.4. 自定义赛道环境

项目目标
• 创建自定义赛道,模拟 AI 需要适应的不同环境。
• 调整环境参数(如摩擦力、赛道长度、障碍物)。
• 训练 AI 适应不同赛道,提高泛化能力。

示例代码:自定义赛道

from racecar_gym.envs import make_custom_env
custom_config = {
    "track": "complex_track",  # 选择复杂赛道
    "max_speed": 50.0,  # 设置最大速度
    "use_lidar": True,  # 启用 LiDAR
    "use_camera": True  # 启用摄像头
}
env = make_custom_env(custom_config)
obs, info = env.reset()

4.结论

Racecar Gym 提供了一个高性能、可扩展的赛车仿真环境,广泛应用于:

自动驾驶 AI 研究

多智能体赛车竞速

计算机视觉与传感器感知

强化学习训练与路径优化

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/967427.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

jupyterLab插件开发

jupyter lab安装、配置: jupyter lab安装、配置教程_容器里装jupyterlab-CSDN博客 『Linux笔记』服务器搭建神器JupyterLab_linux_布衣小张-腾讯云开发者社区 Jupyter Lab | 安装、配置、插件推荐、多用户使用教程-腾讯云开发者社区-腾讯云 jupyterLab插件开发教…

1.Excel:某停车场计划调整收费标准❗(13)

目录 函数VLOOKUP ROUNDUP/ROUNDDOWN函数 NO1​ NO2会计专用类型​ NO3收费标准VLOOKUP​ NO4停放时间(天)​ NO5金额roundup/rounddown​ ​NO6汇总行​ NO7单元格突出显示​ NO8数据透视表​ 函数VLOOKUP VLOOKUP(收费标准!A3:B5 F4&#xf…

elasticsearch安装插件analysis-ik分词器(深度研究docker内elasticsearch安装插件的位置)

最近在学习使用elasticsearch,但是在安装插件ik的时候遇到许多问题。 所以在这里开始对elasticsearch做一个深度的研究。 首先提供如下链接: https://github.com/infinilabs/analysis-ik/releases 我们下载elasticsearch-7-17-2的Linux x86_64版本 …

Git 分布式版本控制工具使用教程

1.关于Git 1.1 什么是Git Git是一款免费、开源的分布式版本控制工具,由Linux创始人Linus Torvalds于2005年开发。它被设计用来处理从很小到非常大的项目,速度和效率都非常高。Git允许多个开发者几乎同时处理同一个项目而不会互相干扰,并且在…

VMware 虚拟机 ubuntu 20.04 扩容工作硬盘

一、关闭虚拟机 关闭虚拟机参考下图,在vmware 调整磁盘容量 二、借助工具fdisk testubuntu ~ $ df -h Filesystem Size Used Avail Use% Mounted on udev 1.9G 0 1.9G 0% /dev tmpfs 388M 3.1M 385M 1% /run /dev/sda5 …

使用python tk 做UI,实现的步骤如下:

Update UI 先~ 使用python tk 做UI,实现的步骤如下:1、点击初始化按钮后,Robot 回到Home 位置,位置到达后发送Home 给视觉,UI更新Robot位置为 Home 2、点击基准按钮后,Robot 走到POS1,位置到达后发送POS1+++当前位置(Ref_POS1_X、Ref _POS1_Y、Ref _POS1_R)给视觉,UI更…

头条百度批量采集软件说明文档

旧版说明文档《头条号文章批量采集软件4.0版本说明文档!头条/微头条文章批量采集》 头条的采集软件已经更新了好多个版本了,一直没有做详细的介绍文档,最近更新了一些功能进去,一块来写一下说明文档。 1、主界面 2、头条作者采集…

Wpf美化按钮,输入框,下拉框,dataGrid

Wpf美化按钮&#xff0c;输入框&#xff0c;下拉框&#xff0c;dataGrid 引用代码后 引用资源 <ControlTemplate x:Key"CustomProgressBarTemplate" TargetType"ProgressBar"><Grid><Border x:Name"PART_Track" CornerRadius&q…

DeepSeek从入门到精通:全面掌握AI大模型的核心能力

文章目录 一、DeepSeek是什么&#xff1f;性能对齐OpenAI-o1正式版 二、Deepseek可以做什么&#xff1f;能力图谱文本生成自然语言理解与分析编程与代码相关常规绘图 三、如何使用DeepSeek&#xff1f;四、DeepSeek从入门到精通推理模型推理大模型非推理大模型 快思慢想&#x…

从MySQL优化到脑力健康:技术人与效率的双重提升

文章目录 零&#xff1a;前言一&#xff1a;MySQL性能优化的核心知识点1. 索引优化的最佳实践实战案例&#xff1a; 2. 高并发事务的处理机制实战案例&#xff1a; 3. 查询性能调优实战案例&#xff1a; 4. 缓存与连接池的优化实战案例&#xff1a; 二&#xff1a;技术工作者的…

大语言模型实践——基于现有API的二次开发

基于现有的API平台做一些实用的AI小应用。 API服务商&#xff1a;阿里云百炼 云服务器&#xff1a;阿里云&#xff08;2核2GB&#xff09; 部署框架&#xff1a;gradio 调用框架&#xff1a;openai 语言&#xff1a;Python &#xff08;注&#xff1a;若搭建网站或API接口…

Windows逆向工程入门之进制拓展(BIN OCT DEC HEX)

公开视频 -> 链接点击跳转公开课程博客首页 -> ​​​链接点击跳转博客主页 目录 一、进制基础 1. 什么是进制&#xff1f; 二、二进制、八进制、十六进制的定义和规则 1. 二进制 (Binary) 示例&#xff1a; 2. 八进制 (Octal) 示例&#xff1a; 3. 十六进制 (H…

【数据结构】_堆的实现

目录 1. 堆的实现 1.1 Heap.h 1.2 Heap.c 1.3 Test_Heap.c 专栏前文中&#xff0c;已经介绍了入堆及向上调整算法&#xff0c;出堆及向下调整算法&#xff0c;详情见下文&#xff1a; 【数据结构】_堆的结构及向上、向下调整算法-CSDN博客文章浏览阅读352次&#xff0c;点…

重启电脑之后vscode不见了

某天重启电脑之后发现vscode被删除 双击发现是 后面追溯到文件夹下面发现有一个文件夹的名字叫_ 把这个文件夹打开发现之前的包全在这里面 只需要把这个包里面的文件全部移到上一级即可

高级加密标准AES候选算法之一Crypton

目录 (1)轮密钥加 (2)列混合变换 (3)字节替代变换 (4)字节置换变换 Crypton的加密算法 Crypton的解密算法 密钥扩展算法 高级加密标准AES候选算法之一Crypton Crypton算法是由Chae Hoon Lim于1998年设计的,它是被接受为AES侯选者的15种分组密码之一。该算法是…

2025最新主流深度学习算法全解析

深度学习&#xff1a;开启智能时代的钥匙 在当今数字化时代&#xff0c;深度学习无疑是人工智能领域中最为耀眼的明星。它如同一把神奇的钥匙&#xff0c;开启了智能时代的大门&#xff0c;让计算机从简单的数据处理迈向了复杂的智能决策。深度学习通过构建具有多个层次的神经网…

51单片机(国信长天)矩阵键盘的基本操作

在CT107D单片机综合训练平台上&#xff0c;首先将J5处的跳帽接到1~2引脚&#xff0c;使按键S4~S19按键组成4X4的矩阵键盘。在扫描按键的过程中&#xff0c;发现有按键触发信号后(不做去抖动)&#xff0c;待按键松开后&#xff0c;在数码管的第一位显示相应的数字:从左至右&…

如何在浏览器中搭建开源Web操作系统Puter的本地与远程环境

文章目录 前言1.关于Puter2.本地部署Puter3.Puter简单使用4. 安装内网穿透5.配置puter公网地址6. 配置固定公网地址 前言 嘿&#xff0c;小伙伴们&#xff01;是不是每次开机都要像打地鼠一样不停地点击各种网盘和应用程序的登录按钮&#xff0c;感觉超级麻烦&#xff1f;更让…

【JavaScript】this 指向由入门到精通

this 的概念 this 在JavaScript 及其其他面向对象的编程语言中&#xff0c;存在的目的是为了提供一种在对象方法中引用当前对象的方式。 它为方法提供了对当前实例的引用&#xff0c;使得方法能够访问或者修改实例的成员变量。 注意点&#xff1a; this 的绑定和定位的位置…

javaEE-10.CSS入门

目录 一.什么是CSS ​编辑二.语法规则: 三.使用方式 1.行内样式: 2.内部样式: 3.外部样式: 空格规范 : 四.CSS选择器类型 1.标签选择器 2.类选择器 3.ID选择器 4.通配符选择器 5.复合选择器 五.常用的CSS样式 1.color:设置字体颜色 2.font-size:设置字体大小 3…