Attention--人工智能领域的核心技术

1. Attention 的全称与基本概念

在人工智能(Artificial Intelligence,AI)领域,Attention 机制的全称是 Attention Mechanism(注意力机制)。它是一种能够动态分配计算资源,使模型在处理输入数据时聚焦于最相关部分的技术。Attention 机制最早起源于自然语言处理(Natural Language Processing,NLP),但如今已广泛应用于计算机视觉、语音识别等多个领域。
在这里插入图片描述

2. Attention 机制的发展历史

Attention 机制的概念最早可追溯到认知科学和神经科学中的注意力理论,但其正式应用于人工智能领域是在 2014 年。

  • 2014年:Bahdanau 等人在论文《Neural Machine Translation by Jointly Learning to Align and Translate》中提出 Soft Attention,用于神经机器翻译(Neural Machine Translation, NMT),解决了长序列信息丢失的问题。
  • 2015年:Luong 等人提出 Global AttentionLocal Attention,进一步优化了 Attention 机制,使得翻译质量显著提升。
  • 2017年:Vaswani 等人在论文《Attention is All You Need》中提出 Transformer 模型,其中 Self-Attention(自注意力) 机制成为核心。Transformer 摒弃了传统的循环神经网络(RNN),极大地提高了并行计算能力,加速了 NLP 任务的发展。
  • 2018年至今:Google、OpenAI、Meta(原Facebook)等科技巨头在 Transformer 的基础上,推出了 BERT(Google, 2018)GPT(OpenAI, 2018-至今)T5(Google, 2019) 等大型语言模型,使 Attention 机制成为深度学习领域的核心技术。

3. 主要涉及的企业与公司

多家科技公司在 Attention 机制的研究和应用方面贡献卓著:

  • Google:提出 Transformer 模型,并研发了 BERT、T5 等 NLP 领域的里程碑式模型。
  • OpenAI:基于 Transformer 机制开发 GPT(Generative Pre-trained Transformer)系列,推动了生成式 AI 的快速发展。
  • Meta(原 Facebook):在计算机视觉领域,推出了 Vision Transformer(ViT),用于图像识别。
  • Microsoft:应用 Attention 机制优化了 Office 365、Azure AI 服务,并推出了 Turing-NLG 语言模型。
  • Tesla:在自动驾驶技术中使用 Attention 机制优化感知系统,提高自动驾驶的安全性和稳定性。

4. 相关算法与模型

Attention 机制已成为多个深度学习模型的核心组件,常见的相关算法和模型包括:

(1)基本 Attention 机制
  • Soft Attention:为每个输入元素分配一个权重,以强调重要部分。
  • Hard Attention:仅关注某些特定部分,非连续可微,因此训练较难。
(2)Transformer 及其变种
  • Transformer:基于 Self-Attention 和 Feed Forward 结构,彻底改变了 NLP 任务的处理方式。
  • BERT(Bidirectional Encoder Representations from Transformers):双向 Transformer 结构,用于 NLP 任务,如问答、情感分析。
  • GPT(Generative Pre-trained Transformer):基于自回归(Auto-Regressive)Transformer 架构的生成式 AI 模型。
  • T5(Text-To-Text Transfer Transformer):将所有 NLP 任务转化为文本到文本的问题,提高了任务的泛化能力。
  • ViT(Vision Transformer):应用 Attention 机制到计算机视觉领域,实现无卷积的图像识别。

5. Attention 机制的使用方式

Attention 机制的核心思想是计算查询(Query)键(Key)值(Value) 之间的加权关系,使模型能够关注最重要的信息。

Self-Attention 计算公式
Attention ( Q , K , V ) = softmax ( Q K T d k ) V \text{Attention}(Q, K, V) = \text{softmax} \left( \frac{QK^T}{\sqrt{d_k}} \right) V Attention(Q,K,V)=softmax(dk QKT)V
其中, Q Q Q K K K V V V 分别表示查询、键和值矩阵, d k d_k dk是缩放因子,以防止梯度过大。

在实际应用中,Attention 机制通常用于:

  • 文本生成(如 ChatGPT)
  • 机器翻译(如 Google Translate)
  • 图像识别(如 ViT)
  • 语音识别(如 Siri、Alexa)
  • 自动驾驶(如 Tesla FSD)

6. Attention 机制的使用特点

Attention 机制的主要优势包括:

  • 长距离依赖建模:能够捕捉句子或图像中的远程依赖关系。
  • 并行计算能力强:相比 RNN,Attention 允许并行处理数据,提高计算效率。
  • 可解释性强:能够通过注意力分布可视化,理解模型的关注点。
  • 适用范围广泛:不仅适用于 NLP,还广泛用于计算机视觉、推荐系统等领域。

但 Attention 机制也存在一些挑战:

  • 计算复杂度较高:计算 Attention 权重涉及矩阵运算,计算开销较大。
  • 依赖大规模数据:Transformer 及其变体需要大量数据和计算资源进行训练。

7. Attention 机制的应用领域

Attention 机制已经深入多个行业,包括但不限于:

  • 自然语言处理(NLP):机器翻译(Google Translate)、文本摘要(Summarization)、对话系统(ChatGPT)。
  • 计算机视觉(CV):目标检测(YOLO with Attention)、图像分割(SegFormer)、人脸识别。
  • 语音处理:语音转文字(Whisper)、语音合成(Tacotron)。
  • 自动驾驶:自动驾驶感知系统(Tesla FSD)。
  • 生物医药:基因序列分析、药物研发。
  • 金融领域:风险预测、智能投顾。

8. 未来发展趋势

Attention 机制已成为深度学习的重要组成部分,未来可能的发展趋势包括:

  • 更高效的 Transformer 变体(如 Linformer、Longformer),优化计算效率。
  • 多模态 AI(Multimodal AI),将 Attention 机制用于文本、图像、语音等多种数据类型的融合。
  • 边缘计算优化,在移动设备或嵌入式系统上高效运行 Attention 模型。

9. 结语

Attention 机制已成为现代人工智能的重要基石,从 NLP 到计算机视觉,从语音识别到自动驾驶,其应用领域广泛,影响深远。未来,随着计算资源的提升和模型的优化,Attention 机制将继续推动人工智能技术的发展,引领新一轮智能革命。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/962290.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

DeepSeek能执行程序吗?

1. 前言 大过年的,继续蹭DeepSeek的热点,前面考察了DeepSeek能否进行推理(DeekSeek能否进行逻辑推理),其实似乎没有结论,因为还没有到上难度,DeepSeek似乎就纠结在一些与推理无关的事情上了&am…

5.3.2 软件设计原则

文章目录 抽象模块化信息隐蔽与独立性衡量 软件设计原则:抽象、模块化、信息隐蔽。 抽象 抽象是抽出事物本质的共同特性。过程抽象是指将一个明确定义功能的操作当作单个实体看待。数据抽象是对数据的类型、操作、取值范围进行定义,然后通过这些操作对数…

STM32 TIM编码器接口测速

编码器接口简介: Encoder Interface 编码器接口 编码器接口可接收增量(正交)编码器的信号,根据编码器旋转产生的正交信号脉冲,自动控制CNT自增或自减,从而指示编码器的位置、旋转方向和旋转速度 每个高级定…

四.4 Redis 五大数据类型/结构的详细说明/详细使用( zset 有序集合数据类型详解和使用)

四.4 Redis 五大数据类型/结构的详细说明/详细使用( zset 有序集合数据类型详解和使用) 文章目录 四.4 Redis 五大数据类型/结构的详细说明/详细使用( zset 有序集合数据类型详解和使用)1. 有序集合 Zset(sorted set)2. zset 有序…

Spring AI 在微服务中的应用:支持分布式 AI 推理

1. 引言 在现代企业中,微服务架构 已成为开发复杂系统的主流方式,而 AI 模型推理 也越来越多地被集成到业务流程中。如何在分布式微服务架构下高效地集成 Spring AI,使多个服务可以协同完成 AI 任务,并支持分布式 AI 推理&#x…

使用Ollama和Open WebUI快速玩转大模型:简单快捷的尝试各种llm大模型,比如DeepSeek r1

Ollama本身就是非常优秀的大模型管理和推理组件,再使用Open WebUI更加如虎添翼! Ollama快速使用指南 安装Ollama Windows下安装 下载Windows版Ollama软件:Release v0.5.7 ollama/ollama GitHub 下载ollama-windows-amd64.zip这个文件即可…

EasyExcel写入和读取多个sheet

最近在工作中,作者频频接触到Excel处理,因此也对EasyExcel进行了一定的研究和学习,也曾困扰过如何处理多个sheet,因此此处分享给大家,希望能有所帮助 目录 1.依赖 2. Excel类 3.处理Excel读取和写入多个sheet 4. 执…

《DeepSeek 网页/API 性能异常(DeepSeek Web/API Degraded Performance):网络安全日志》

DeepSeek 网页/API 性能异常(DeepSeek Web/API Degraded Performance)订阅 已识别 - 已识别问题,并且正在实施修复。 1月 29, 2025 - 20:57 CST 更新 - 我们将继续监控任何其他问题。 1月 28, 2025 - 22&am…

安卓(android)饭堂广播【Android移动开发基础案例教程(第2版)黑马程序员】

一、实验目的(如果代码有错漏,可查看源码) 1.熟悉广播机制的实现流程。 2.掌握广播接收者的创建方式。 3.掌握广播的类型以及自定义官博的创建。 二、实验条件 熟悉广播机制、广播接收者的概念、广播接收者的创建方式、自定广播实现方式以及有…

分享|借鉴传统操作系统中分层内存系统的理念(虚拟上下文管理技术)提升LLMs在长上下文中的表现

《MemGPT: Towards LLMs as Operating Systems》 结论: 大语言模型(LLMs)上下文窗口受限问题的背景下, 提出了 MemGPT,通过类操作系统的分层内存系统的虚拟上下文管理技术, 提升 LLMs 在复杂人物&#…

games101-作业3

由于此次试验需要加载模型,涉及到本地环节,如果是windows系统,需要对main函数中的路径稍作改变: 这么写需要: #include "windows.h" 该段代码: #include "windows.h" int main(int ar…

Spring Boot 日志:项目的“行车记录仪”

一、什么是Spring Boot日志 (一)日志引入 在正式介绍日志之前,我们先来看看上篇文章中(Spring Boot 配置文件)中的验证码功能的一个代码片段: 这是一段校验用户输入的验证码是否正确的后端代码&#xff0c…

【大厂AI实践】OPPO:大规模知识图谱及其在小布助手中的应用

导读:OPPO知识图谱是OPPO数智工程系统小布助手团队主导、多团队协作建设的自研大规模通用知识图谱,目前已达到数亿实体和数十亿三元组的规模,主要落地在小布助手知识问答、电商搜索等场景。 本文主要分享OPPO知识图谱建设过程中算法相关的技…

机器学习周报-文献阅读

文章目录 摘要Abstract 1 相关知识1.1 WDN建模1.2 掩码操作(Masking Operation) 2 论文内容2.1 WDN信息的数据处理2.2 使用所收集的数据构造模型2.2.1 Gated graph neural network2.2.2 Masking operation2.2.3 Training loss2.2.4 Evaluation metrics 2…

工具的应用——安装copilot

一、介绍Copilot copilot是一个AI辅助编程的助手,作为需要拥抱AI的程序员可以从此尝试进入,至于好与不好,应当是小马过河,各有各的心得。这里不做评述。重点在安装copilot的过程中遇到了一些问题,然后把它总结下&…

后盾人JS--闭包明明白白

延伸函数环境生命周期 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title> <…

顺启逆停程序

两台电机用Q0.0和Q0.1表示&#xff0c;分别有自身的启动和停止按钮&#xff0c;第一台电机启动后&#xff0c;第二台电机才能启动。停止时&#xff0c;第二台电机停止后&#xff0c;第一台电机才能停止。 1. 按下按钮SB1&#xff0c;接触器KM1线圈得电吸合&#xff0c;主触点…

登录授权流程

发起一个网络请求需要&#xff1a;1.请求地址 2.请求方式 3.请求参数 在检查中找到request method&#xff0c;在postman中设置同样的请求方式将登录的url接口复制到postman中&#xff08;json类型数据&#xff09;在payload中选择view parsed&#xff0c;将其填入Body-raw中 …

CUDA学习-内存访问

一 访存合并 1.1 说明 本部分内容主要参考: 搞懂 CUDA Shared Memory 上的 bank conflicts 和向量化指令(LDS.128 / float4)的访存特点 - 知乎 1.2 share memory结构 图1.1 share memory结构 放在 shared memory 中的数据是以 4 bytes(即 32 bits)作为 1 个 word,依…

基于Springboot的社区药房管理系统

博主介绍&#xff1a;java高级开发&#xff0c;从事互联网行业多年&#xff0c;熟悉各种主流语言&#xff0c;精通java、python、php、爬虫、web开发&#xff0c;已经做了多年的设计程序开发&#xff0c;开发过上千套设计程序&#xff0c;没有什么华丽的语言&#xff0c;只有实…