讯飞智作 AI 配音技术浅析(二):深度学习与神经网络

讯飞智作 AI 配音技术依赖于深度学习与神经网络,特别是 TacotronWaveNet 和 Transformer-TTS 模型。这些模型通过复杂的神经网络架构和数学公式,实现了从文本到自然语音的高效转换。


一、Tacotron 模型

Tacotron 是一种端到端的语音合成模型,能够直接从文本生成语音频谱(Mel-spectrogram),然后通过声码器生成最终的语音信号。其主要优势在于能够捕捉文本与语音之间的复杂关系,生成自然流畅的语音。

1. 模型架构

Tacotron 的架构主要包括以下几个部分:

1.编码器(Encoder)

2.注意力机制(Attention Mechanism)

3.解码器(Decoder)

4.后处理网络(Post-processing Network)

    2. 详细技术解析
    1. 编码器(Encoder)

    功能:将输入的文本序列转换为隐藏表示(hidden representations),捕捉文本的语义和语法信息。

    过程

    • 文本嵌入(Text Embedding):将每个字符或单词转换为向量表示。

      其中,x_{t}​ 是第 t 个字符,\textbf{e}_{t} 是其对应的嵌入向量。

    • 卷积层(Convolutional Layers):使用多层一维卷积神经网络(1D CNN)来捕捉文本的局部特征。

    • 双向长短期记忆网络(Bi-directional LSTM):捕捉文本的上下文信息。

      其中,\textbf{h}_{t}​ 是第 t 个时间步的隐藏状态。

    输出:编码器输出一个隐藏状态序列 \textbf{H}=\left \{ \textbf{h}_{1},\textbf{h}_{2},...,\textbf{h}_{T} \right \},作为注意力机制的输入。

    2. 注意力机制(Attention Mechanism)

    功能:在解码过程中,选择性地关注输入文本的不同部分,生成相应的语音频谱。

    过程

    • 计算注意力权重

      其中,\textbf{s}_{i-1}​ 是解码器在第 i-1 个时间步的隐藏状态,\textrm{score} 是评分函数(如点积、拼接等)。

    • 计算上下文向量

    输出:上下文向量 \textbf{c}_{i},用于指导解码器生成语音频谱。

    3. 解码器(Decoder)

    功能:根据上下文向量和之前的语音频谱,生成当前时间步的语音频谱。

    过程

    • LSTM 层

      其中,\textbf{y}_{i-1}​ 是之前生成的语音频谱。

    • 全连接层

      生成当前时间步的语音频谱预测。

    输出:语音频谱序列 \textbf{Y}=\left \{ \textbf{y}_{1},\textbf{y}_{2},...,\textbf{y}_{N} \right \}

    4. 后处理网络(Post-processing Network)

    功能:将预测的语音频谱转换为最终的语音信号。

    过程

    • 使用声码器(Vocoder):Tacotron 通常使用 Griffin-Lim 算法作为声码器,将梅尔频谱转换为语音波形。

    输出:最终的语音波形 \textbf{w}

    3. 关键技术公式总结

    二、WaveNet 模型

    WaveNet 是一种基于卷积神经网络的声码器,能够生成高保真度的语音波形。其主要优势在于能够捕捉语音中的细微变化,生成非常自然的语音。

    1. 模型架构

    WaveNet 的架构主要包括以下几个部分:

    1.因果卷积层(Causal Convolutional Layers)

    2.扩张卷积层(Dilated Convolutional Layers)

    3.门控激活单元(Gated Activation Units)

    4.残差连接(Residual Connections)

    5.跳跃连接(Skip Connections)

    6.输出层(Output Layer)

      2. 详细技术解析
      1. 因果卷积层(Causal Convolutional Layers)

      功能:确保模型在生成当前样本时,只依赖于之前的样本。

      过程

      • 使用一维卷积神经网络(1D CNN),并通过填充(padding)实现因果性。
      2. 扩张卷积层(Dilated Convolutional Layers)

      功能:增加感受野(receptive field),捕捉更长时间的依赖关系。

      过程

      • 在卷积层中引入扩张因子(dilation factor),使得卷积操作跳过若干个样本。

        其中,d 是扩张因子,\textbf{W}^{\left ( l \right )} 是卷积核。

      3. 门控激活单元(Gated Activation Units)

      功能:引入非线性,增强模型的表达能力。

      过程

      • 使用门控机制,将卷积输出分为两部分:

        其中,\ast 表示卷积操作,\odot 表示逐元素相乘,\sigma 是 sigmoid 函数。

      4. 残差连接(Residual Connections)

      功能:缓解梯度消失问题,促进梯度流动。

      过程

      • 将卷积层的输入与输出相加:

      5. 跳跃连接(Skip Connections)

      功能:将底层信息直接传递到高层,增强模型的表达能力。

      过程

      • 将每一层的输出通过跳跃连接传递到输出层:

      6. 输出层(Output Layer)

      功能:将模型输出转换为最终的语音波形。

      过程

      • 使用全连接层,将跳跃连接的结果映射到语音波形的概率分布:

      3. 关键技术公式总结

      三、Transformer-TTS 模型

      Transformer-TTS 模型基于 Transformer 架构,利用自注意力机制(Self-Attention)捕捉文本与语音之间的长距离依赖关系,生成更加自然的语音。

      1. 模型架构

      Transformer-TTS 的架构主要包括以下几个部分:

      1.编码器(Encoder)

      2.解码器(Decoder)

      3.位置编码(Positional Encoding)

      4.多头自注意力机制(Multi-head Self-Attention)

      5.前馈神经网络(Feed-Forward Neural Network)

      6.输出层(Output Layer)

        2. 详细技术解析
        1. 位置编码(Positional Encoding)

        功能:为序列中的每个位置添加位置信息,使模型能够感知序列的顺序。

        过程

        • 使用正弦和余弦函数生成位置编码:

          其中,pos 是位置,i 是维度索引,d_{\textrm{model}} 是模型的维度。

        2. 多头自注意力机制(Multi-head Self-Attention)

        功能:捕捉序列中不同位置之间的依赖关系。

        过程

        • 将输入序列分割成多个头(heads),分别进行自注意力计算:

          其中,Q,K,V 分别是查询、键和值矩阵,\textbf{W}_{i}^{Q},\textbf{W}_{i}^{K},\textbf{W}_{i}^{V}​ 是对应的权重矩阵,\textbf{W}^{O} 是输出权重矩阵。

        • 注意力计算

        3. 前馈神经网络(Feed-Forward Neural Network)

        功能:为每个位置提供非线性变换。

        过程

        • 使用两层全连接层:

        4. 编码器和解码器
        • 编码器:由多层多头自注意力机制和前馈神经网络组成。
        • 解码器:除了多头自注意力机制和前馈神经网络外,还包含编码器-解码器注意力机制。
        5. 输出层

        功能:将解码器输出转换为语音频谱。

        过程

        • 使用线性层将解码器输出映射到语音频谱:

        3. 关键技术公式总结

        本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/962223.html

        如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

        相关文章

        初始化mysql报错cannot open shared object file: No such file or directory

        报错展示 我在初始化msyql的时候报错:mysqld: error while loading shared libraries: libaio.so.1: cannot open shared object file: No such file or directory 解读: libaio包的作用是为了支持同步I/O。对于数据库之类的系统特别重要,因此…

        DeepSeek介绍

        目录 前言 1.介绍一下你自己 2.什么是CUDA CUDA的核心特点: CUDA的工作原理: CUDA的应用场景: CUDA的开发工具: CUDA的局限性: 3.在AI领域,PTX是指什么 1. PTX 的作用 2. PTX 与 AI 的关系 3. …

        python学opencv|读取图像(五十一)使用修改图像像素点上BGR值实现图像覆盖效果

        【1】引言 前序学习了图像的得加方法,包括使用add()函数直接叠加BGR值、使用bitwise()函数对BGR值进行按位计算叠加和使用addWeighted()函数实现图像加权叠加至少三种方法。文章链接包括且不限于: python学opencv|读取图像(四十二&#xff…

        【硬件介绍】三极管工作原理(图文+典型电路设计)

        什么是三极管? 三极管,全称为双极型晶体三极管,是一种广泛应用于电子电路中的半导体器件。它是由三个掺杂不同的半导体材料区域组成的,这三个区域分别是发射极(E)、基极(B)和集电极&…

        【解决方案】MuMu模拟器移植系统进度条卡住98%无法打开

        之前在Vmware虚拟机里配置了mumu模拟器,现在想要移植到宿主机中 1、虚拟机中的MuMu模拟器12-1是目标系统,对应的目录如下 C:\Program Files\Netease\MuMu Player 12\vms\MuMuPlayer-12.0-1 2、Vmware-虚拟机-设置-选项,启用共享文件夹 3、复…

        C++中常用的十大排序方法之1——冒泡排序

        成长路上不孤单😊😊😊😊😊😊 【😊///计算机爱好者😊///持续分享所学😊///如有需要欢迎收藏转发///😊】 今日分享关于C中常用的排序方法之——冒泡排序的相关…

        开源2+1链动模式AI智能名片S2B2C商城小程序:利用用户争强好胜心理促进分享行为的策略研究

        摘要:随着互联网技术的快速发展和社交媒体的普及,用户分享行为在企业营销中的作用日益凸显。本文旨在探讨如何利用用户的争强好胜心理,通过开源21链动模式AI智能名片S2B2C商城小程序(以下简称“小程序”)促进用户分享行…

        DeepSeek-R1环境搭建推理测试

        引子 这两天国货之光DeepSeek-R1火爆出圈,凑个热闹。过来看看 aha moment(顿悟时刻)的神奇,OK,我们开始吧。 一、模型介绍 1月20日,中国AI公司深度求索(DeepSeek)发布的DeepSeek-…

        【深度分析】微软全球裁员计划不影响印度地区,将继续增加当地就业机会

        当微软的裁员刀锋掠过全球办公室时,班加罗尔的键盘声却愈发密集——这场资本迁徙背后,藏着数字殖民时代最锋利的生存法则。 表面是跨国公司的区域战略调整,实则是全球人才市场的地壳运动。微软一边在硅谷裁撤年薪20万美金的高级工程师&#x…

        架构技能(六):软件设计(下)

        我们知道,软件设计包括软件的整体架构设计和模块的详细设计。 在上一篇文章(见 《架构技能(五):软件设计(上)》)谈了软件的整体架构设计,今天聊一下模块的详细设计。 模…

        unity使用内置videoplayer打包到安卓手机进行视频播放

        1.新建UI,新建RawImage在画布当作视频播放的显示载体 2.新建VideoPlayer 3.新建Render Texture作为连接播放器视频显示和幕布的渲染纹理 将Render Texture同时挂载在VideoPlayer播放器和RawImage上。这样就可以将显示的视频内容在RawImage上显示出来了。 问题在于&a…

        LLMs之RAG:解读RAG主流的七类架构(Naive RAG/Retrieve-and-rerank/Multimodal RAG/GraphRAG/HybridRAG/Agentic RAG(Ro

        LLMs之RAG:解读RAG主流的七类架构(Naive RAG/Retrieve-and-rerank/Multimodal RAG/GraphRAG/HybridRAG/Agentic RAG(Router)/Agentic RAG(Multi-Agent)) 目录 解读RAG主流的七类架构(Naive RAG/Retrieve-and-rerank/Multimodal RAG/GraphRAG/HybridRAG/Agentic RAG…

        99.20 金融难点通俗解释:中药配方比喻马科维茨资产组合模型(MPT)

        目录 0. 承前1. 核心知识点拆解2. 中药搭配比喻方案分析2.1 比喻的合理性 3. 通俗易懂的解释3.1 以中药房为例3.2 配方原理 4. 实际应用举例4.1 基础配方示例4.2 效果说明 5. 注意事项5.1 个性化配置5.2 定期调整 6. 总结7. 代码实现 0. 承前 本文主旨: 本文通过中…

        python算法和数据结构刷题[1]:数组、矩阵、字符串

        一画图二伪代码三写代码 LeetCode必刷100题:一份来自面试官的算法地图(题解持续更新中)-CSDN博客 算法通关手册(LeetCode) | 算法通关手册(LeetCode) (itcharge.cn) 面试经典 150 题 - 学习计…

        EWM 变更库存类型

        目录 1 简介 2 配置 3 业务操作 1 简介 一般情况下 EWM 标准收货流程是 ROD(Ready on Dock) --> AFS(Avaiable for Sale),对应 AG 001 --> AG 002,对应库存类型 F1 --> F2。 因业务需要反向进行的时候,AFS --> ROD,AG 002 --> AG 001,库存类型 F2…

        B站吴恩达机器学习笔记

        机器学习视频地址: 4.5 线性回归中的梯度下降_哔哩哔哩_bilibili 损失函数学习地址: 损失函数选择 选凸函数的话,会收敛到全局最小值。证明凸函数用Hessian矩阵。凸函数定义:两点连线比线上所有点都大。 batch理解&#xff1…

        SpringBoot 数据访问(MyBatis)

        SpringBoot 数据访问(MyBatis) 向 SQL 语句传参 #{} 形式 #{}:如果传过来的值是字符串类型。那两边会自动加上 单引号。当传递给 #{} 的参数值是非字符串类型(如整数、浮点数、布尔值等),MyBatis 不会为这些值添加引…

        【游戏设计原理】93 - 节奏

        与“序-破-急”类似的节奏概念广泛存在于全球不同文化和创意领域中。以下是一些常见的节奏框架和理论,它们与“序-破-急”在本质上有相似之处,但体现出不同的风格和应用: 1. 三幕式结构(Three-Act Structure) 来源&a…

        蓝桥云客 三羊献瑞

        三羊献瑞 题目描述 本题为填空题,只需要算出结果后,在代码中使用输出语句将所填结果输出即可。 观察下面的加法算式: 祥 瑞 生 辉 三 羊 献 瑞 -------------------三 羊 生 瑞 气其中,相同的汉字代表相同的数字,…

        OpenCV:二值化与自适应阈值

        目录 简述 1. 什么是二值化 2. 二值化接口 2.1 参数说明​​​​​ 2.2 示例代码 2.3 运行结果 3. 自适应阈值 3.1 参数说明 3.2 示例代码 3.3 运行结果 4. 总结 4.1 二值化 4.2 自适应阈值 相关阅读 OpenCV:图像的腐蚀与膨胀-CSDN博客 简述 图像二值…