B站吴恩达机器学习笔记

机器学习视频地址:

4.5 线性回归中的梯度下降_哔哩哔哩_bilibili

损失函数学习地址:

损失函数选择

选凸函数的话,会收敛到全局最小值。证明凸函数用Hessian矩阵。凸函数定义:两点连线比线上所有点都大。

batch理解:

  • 在机器学习中,指的是用于一次模型更新的所有样本的集合。当使用批处理进行训练时,每次更新模型参数是基于整个批处理内的所有样本计算得到的梯度。
  • batch设置为2的话,数据集6张图片,第一次1 2第二次3 4第三次5 6

梯度下降法学习地址:

numpy学习地址:

Python之Numpy详细教程_python numpy-CSDN博客

numpy常用函数:


np.array([1,2,3])

np.array(
[1,2],
[2,3],
[3,4])
//reshape(-1, 1) 是一种便捷的方式来将任何一维数组转换为列向量,其中 -1 告诉 NumPy 自动计算合适的尺寸以匹配另一维度的大小(在这里是指定的 1)
//reshape(-1, x)可以理解为得到(?,x)的数组
np.array([1, 2, 3]).reshape(-1, 1)
//做点积操作
np.dot(w,x)

特征归一化处理:

归一化方法学习地址:

Min-Max 归一化:通过线性变换将数据映射到[0, 1]区间内。

Z-score 标准化(Standardization):这种方法将原始数据转换为均值为0、标准差为1的数据分布,即标准正态分布。

L2 正则化(也称为向量归一化):对于每个样本,将其特征向量除以其L2范数,使得每个样本的特征向量长度为1。这在文本分类等需要处理高维度稀疏数据的任务中非常有用。

Batch Normalization:不同于上述针对输入数据的归一化方法,Batch Normalization是在神经网络内部使用的一种技术,通常应用于隐藏层的输出上。它通过对每一批次的小批量数据进行归一化,保持输入到每一层的分布稳定,从而加速训练过程,并允许使用更高的学习率。

Layer Normalization:与Batch Normalization不同,Layer Normalization是基于单个训练样本而不是批次来计算均值和方差,因此不受批次大小的影响,特别适合于循环神经网络(RNN)或需要在线学习的场景。

梯度下降中如何选择\alpha

正常情况下会是这样,如果误差越来越大说明学习率大了。

停止条件:

1.看图达到最小。2.判断收敛(数分那种收敛判定)。

如何选择:

这两种说明学习率太大或者程序有bug。

常用技巧就是将学习率设置的很小。

通常来说:0.001 0.003  0.01 0.03  0.1  0.3 1 ...经常尝试扩大三倍取值。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/962203.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

SpringBoot 数据访问(MyBatis)

SpringBoot 数据访问(MyBatis) 向 SQL 语句传参 #{} 形式 #{}:如果传过来的值是字符串类型。那两边会自动加上 单引号。当传递给 #{} 的参数值是非字符串类型(如整数、浮点数、布尔值等),MyBatis 不会为这些值添加引…

【游戏设计原理】93 - 节奏

与“序-破-急”类似的节奏概念广泛存在于全球不同文化和创意领域中。以下是一些常见的节奏框架和理论,它们与“序-破-急”在本质上有相似之处,但体现出不同的风格和应用: 1. 三幕式结构(Three-Act Structure) 来源&a…

蓝桥云客 三羊献瑞

三羊献瑞 题目描述 本题为填空题,只需要算出结果后,在代码中使用输出语句将所填结果输出即可。 观察下面的加法算式: 祥 瑞 生 辉 三 羊 献 瑞 -------------------三 羊 生 瑞 气其中,相同的汉字代表相同的数字,…

OpenCV:二值化与自适应阈值

目录 简述 1. 什么是二值化 2. 二值化接口 2.1 参数说明​​​​​ 2.2 示例代码 2.3 运行结果 3. 自适应阈值 3.1 参数说明 3.2 示例代码 3.3 运行结果 4. 总结 4.1 二值化 4.2 自适应阈值 相关阅读 OpenCV:图像的腐蚀与膨胀-CSDN博客 简述 图像二值…

【memgpt】letta 课程6: 多agent编排

Lab 6: Multi-Agent Orchestration 多代理协作 letta 是作为一个服务存在的,app通过restful api 通信 多智能体之间如何协调与沟通? 相互发送消息共享内存块,让代理同步到不同的服务的内存块

Java---猜数字游戏

本篇文章所实现的是Java经典的猜数字游戏 , 运用简单代码来实现基本功能 目录 一.题目要求 二.游戏准备 三.代码实现 一.题目要求 随机生成一个1-100之间的整数(可以自己设置区间),提示用户猜测,猜大提示"猜大了",…

STM32标准库移植RT-Thread nano

STM32标准库移植RT-Thread Nano 哔哩哔哩教程链接:STM32F1标准库移植RT_Thread Nano 移植前的准备 stm32标准库的裸机代码(最好带有点灯和串口)RT-Thread Nano Pack自己的开发板 移植前的说明 本人是在读学生,正在学习阶段&a…

使用Navicat Premium管理数据库时,如何关闭事务默认自动提交功能?

使用Navicat Premium管理数据库时,最糟心的事情莫过于事务默认自动提交,也就是你写完语句运行时,它自动执行commit提交至数据库,此时你就无法进行回滚操作。 建议您尝试取消勾选“选项”中的“自动开始事务”,点击“工…

AutoDL 云服务器:xfce4 远程桌面 终端乱码 + 谷歌浏览器

/usr/bin/google-chrome-stable --no-sandbox --proxy-server"127.0.0.1:7890" 打开新的PowerShell ssh -p 54521 rootconnect.yza1.seetacloud.com /opt/TurboVNC/bin/vncserver -kill :1 rm -rf /tmp/.X1* USERroot /opt/TurboVNC/bin/vncserver :1 -desktop …

《STL基础之vector、list、deque》

【vector、list、deque导读】vector、list、deque这三种序列式的容器,算是比较的基础容器,也是大家在日常开发中常用到的容器,因为底层用到的数据结构比较简单,笔者就将他们三者放到一起做下对比分析,介绍下基本用法&a…

JavaScript网页设计案例(任务管理器)

任务管理器 功能描述:用户可以添加任务、删除任务,并且任务列表在页面刷新后不会丢失,还能进行任务过滤与搜索。代码实现思路 HTML 结构:创建输入框用于输入任务、按钮用于添加任务,以及无序列表用于展示任务列表。CSS…

模型I/O功能之模型包装器

文章目录 模型包装器分类LLM模型包装器、聊天模型包装器 截至2023年7月,LangChain支持的大语言模型已经超过了50种,这其中包括了来自OpenAI、Meta、Google等顶尖科技公司的大语言模型,以及各类优秀的开源大语言模型。对于这些大语言模型&…

机器人抓取与操作经典规划算法(深蓝)——2

1 经典规划算法 位姿估计:(1)相机系位姿 (2)机器人系位姿 抓取位姿:(1)抓取位姿计算 (2)抓取评估和优化 路径规划:(1)笛卡…

开发环境搭建-4:WSL 配置 docker 运行环境

在 WSL 环境中构建:WSL2 (2.3.26.0) Oracle Linux 8.7 官方镜像 基本概念说明 容器技术 利用 Linux 系统的 文件系统(UnionFS)、命名空间(namespace)、权限管理(cgroup),虚拟出一…

【2024年华为OD机试】(B卷,100分)- 热点网站统计(Java JS PythonC/C++)

一、问题描述 题目描述 企业路由器的统计页面需要动态统计公司访问最多的网页URL的Top N。设计一个算法,能够高效动态统计Top N的页面。 输入描述 每一行都是一个URL或一个数字: 如果是URL,代表一段时间内的网页访问。如果是数字N&#…

Git图形化工具【lazygit】

简要介绍一下偶然发现的Git图形化工具——「lazygit」 概述 Lazygit 是一个用 Go 语言编写的 Git 命令行界面(TUI)工具,它让 Git 操作变得更加直观和高效。 Github地址:https://github.com/jesseduffield/lazygit 主要特点 主要…

单细胞-第五节 多样本数据分析,打分R包AUCell

文件在单细胞\5_GC_py\1_single_cell\3.AUCell.Rmd 1.基因 rm(list = ls()) load("g.Rdata")2.AUCell https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9897923 IF: NA NA NA用这个文章里的方法,将单细胞亚群的marker基因与ros相关基因取交集,用作AUCell的基因集…

单片机基础模块学习——超声波传感器

一、超声波原理 左边发射超声波信号,右边接收超声波信号 左边的芯片用来处理超声波发射信号,中间的芯片用来处理接收的超声波信号 二、超声波原理图 T——transmit 发送R——Recieve 接收 U18芯片对输入的N_A1信号进行放大,然后输入给超声…

BWM 世界模型

DGX AGX Ominiverse With Cosmos 功能 1w 张 H100 训练了 3个月 使用 Ray 串流 数据 数据准备 处理 pipeline 数组组成 真实世界的物理数据 训练 1、使用 L1 损失,最小化 输入和重构视频之间的像素级差异 以及基于 VGG19 的一个特征感知损失 2、使用光流的损…