e2studio开发RA0E1(16)----配置RTC时钟及显示时间

e2studio开发RA0E1.16--配置RTC时钟及显示时间

  • 概述
  • 视频教学
  • 样品申请
  • 完整代码下载
  • 硬件准备
  • 参考程序
  • 新建工程
  • 工程模板
  • 保存工程路径
  • 芯片配置
  • 工程模板选择
  • 时钟设置
  • UART配置
  • UART属性配置
  • 设置e2studio堆栈
  • e2studio的重定向printf设置
  • R_UARTA_Open()函数原型
  • 回调函数user_uart_callback ()
  • printf输出重定向到串口
  • RTC配置
  • RTC属性配置
  • 设定时间
  • 设定周期性中断
  • 设定日历闹钟时间
  • 回调函数
  • R_RTC_C_Open函数
  • 演示效果

概述

本文将详细讲解如何借助e2studio来对瑞萨微控制器进行实时时钟(RTC)的设置和配置,以便实现日历功能和一秒钟产生的中断,从而通过串口输出实时数据。
实时时钟(RTC)模块是一种时间管理外设,主要用于记录和控制日期和时间。与常见的微控制器(MCU)中的定时器不同,RTC时钟提供了两种计时方式:日期模式和计时模式。RTC时钟的常用功能包括设置时间、设定闹钟、配置周期性中断以及启动或停止操作。
通过使用e2studio工具,我们可以轻松地对瑞萨微控制器进行RTC配置,从而实现高精度的时间和日期管理。在本文中,我们将重点讨论如何设置RTC时钟日历和产生一秒钟的中断,使得串口能够实时打印数据。

最近在瑞萨RA的课程,需要样片的可以加qun申请:925643491。

视频教学

https://www.bilibili.com/video/BV1tQc6eWE9c/

e2studio开发RA0E1(16)----配置RTC时钟及显示时间

样品申请

https://www.wjx.top/vm/OhcKxJk.aspx#

完整代码下载

硬件准备

首先需要准备一个开发板,这里我准备的是芯片型号R7FA0E1073CFJ的开发板。

在这里插入图片描述

参考程序

https://github.com/CoreMaker-lab/RA0E1

https://gitee.com/CoreMaker/RA0E1

新建工程

在这里插入图片描述

工程模板

在这里插入图片描述

保存工程路径

在这里插入图片描述

芯片配置

本文中使用R7FA0E1073CFJ来进行演示。

在这里插入图片描述

工程模板选择

在这里插入图片描述

时钟设置

开发板上的外部高速晶振为12M.

在这里插入图片描述

需要修改XTAL为8M。
在这里插入图片描述

UART配置

在这里插入图片描述

点击Stacks->New Stack->Connectivity -> UART(r_uarta)。

在这里插入图片描述
配置串口时钟。

在这里插入图片描述

UART属性配置

在这里插入图片描述

设置e2studio堆栈

printf函数通常需要设置堆栈大小。这是因为printf函数在运行时需要使用栈空间来存储临时变量和函数调用信息。如果堆栈大小不足,可能会导致程序崩溃或不可预期的行为。
printf函数使用了可变参数列表,它会在调用时使用栈来存储参数,在函数调用结束时再清除参数,这需要足够的栈空间。另外printf也会使用一些临时变量,如果栈空间不足,会导致程序崩溃。
因此,为了避免这类问题,应该根据程序的需求来合理设置堆栈大小。

在这里插入图片描述

e2studio的重定向printf设置

在这里插入图片描述
在嵌入式系统的开发中,尤其是在使用GNU编译器集合(GCC)时,–specs 参数用于指定链接时使用的系统规格(specs)文件。这些规格文件控制了编译器和链接器的行为,尤其是关于系统库和启动代码的链接。–specs=rdimon.specs 和 --specs=nosys.specs 是两种常见的规格文件,它们用于不同的场景。
–specs=rdimon.specs
用途: 这个选项用于链接“Redlib”库,这是为裸机(bare-metal)和半主机(semihosting)环境设计的C库的一个变体。半主机环境是一种特殊的运行模式,允许嵌入式程序通过宿主机(如开发PC)的调试器进行输入输出操作。
应用场景: 当你需要在没有完整操作系统的环境中运行程序,但同时需要使用调试器来处理输入输出(例如打印到宿主机的终端),这个选项非常有用。
特点: 它提供了一些基本的系统调用,通过调试接口与宿主机通信。
–specs=nosys.specs
用途: 这个选项链接了一个非常基本的系统库,这个库不提供任何系统服务的实现。
应用场景: 适用于完全的裸机程序,其中程序不执行任何操作系统调用,比如不进行文件操作或者系统级输入输出。
特点: 这是一个更“裸”的环境,没有任何操作系统支持。使用这个规格文件,程序不期望有操作系统层面的任何支持。
如果你的程序需要与宿主机进行交互(如在开发期间的调试),并且通过调试器进行基本的输入输出操作,则使用 --specs=rdimon.specs。
如果你的程序是完全独立的,不需要任何形式的操作系统服务,包括不进行任何系统级的输入输出,则使用 --specs=nosys.specs。

在这里插入图片描述

R_UARTA_Open()函数原型

在这里插入图片描述

故可以用 R_UARTA_Open()函数进行配置,开启和初始化UART。

    /* Open the transfer instance with initial configuration. */
    err = R_UARTA_Open(&g_uart0_ctrl, &g_uart0_cfg);
    assert(FSP_SUCCESS == err);


回调函数user_uart_callback ()

当数据发送的时候,可以查看UART_EVENT_TX_COMPLETE来判断是否发送完毕。

在这里插入图片描述
在这里插入图片描述

可以检查检查 “p_args” 结构体中的 “event” 字段的值是否等于 “UART_EVENT_TX_COMPLETE”。如果条件为真,那么 if 语句后面的代码块将会执行。

fsp_err_t err = FSP_SUCCESS;
volatile bool uart_send_complete_flag = false;
void user_uart_callback (uart_callback_args_t * p_args)
{
    if(p_args->event == UART_EVENT_TX_COMPLETE)
    {
        uart_send_complete_flag = true;
    }
}



printf输出重定向到串口

打印最常用的方法是printf,所以要解决的问题是将printf的输出重定向到串口,然后通过串口将数据发送出去。
注意一定要加上头文件#include <stdio.h>

#ifdef __GNUC__                                 //串口重定向
    #define PUTCHAR_PROTOTYPE int __io_putchar(int ch)
#else
    #define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)
#endif


PUTCHAR_PROTOTYPE
{
        err = R_UARTA_Write(&g_uart0_ctrl, (uint8_t *)&ch, 1);
        if(FSP_SUCCESS != err) __BKPT();
        while(uart_send_complete_flag == false){}
        uart_send_complete_flag = false;
        return ch;
}

int _write(int fd,char *pBuffer,int size)
{
    for(int i=0;i<size;i++)
    {
        __io_putchar(*pBuffer++);
    }
    return size;
}

RTC配置

点击Stacks->New Stack->Timers -> Realtime Clock(r_rtc_c)。

在这里插入图片描述

RTC属性配置

在这里插入图片描述

其中LOCO为内部低速时钟,需要准确定时还是需要外部低速晶振Sub-clock。

在这里插入图片描述
在这里插入图片描述

内置典型值为30.5us,为32.787k。

在这里插入图片描述

设定时间

在启动RTC后,需要为其设定当前时间。您可以使用R_RTC_CalendarTimeSet(&g_rtc0_ctrl, &set_time)函数来实现这一目标。具体的时间参数可以通过修改set_time变量来调整。

在这里插入图片描述

//RTC变量
/* rtc_time_t is an alias for the C Standard time.h struct 'tm' */
rtc_time_t set_time =
{
    .tm_sec  = 50,      /* 秒,范围从 0 到 59 */
    .tm_min  = 59,      /* 分,范围从 0 到 59 */
    .tm_hour = 23,      /* 小时,范围从 0 到 23*/
    .tm_mday = 14,       /* 一月中的第几天,范围从 0 到 30*/
    .tm_mon  = 1,      /* 月份,范围从 0 到 11*/
    .tm_year = 125,     /* 自 1900 起的年数,2025为125*/
    .tm_wday = 2,       /* 一周中的第几天,范围从 0 到 6*/
//    .tm_yday=0,         /* 一年中的第几天,范围从 0 到 365*/
//    .tm_isdst=0;        /* 夏令时*/
};

设定周期性中断

如果您想要使用RTC实现固定延迟中断,可以通过R_RTC_C_PeriodicIrqRateSet函数来实现。例如,要设置1秒的周期性中断,您可以使用如下代码:
R_RTC_C_PeriodicIrqRateSet(&g_rtc0_ctrl, RTC_PERIODIC_IRQ_SELECT_1_SECOND);
每次周期性中断产生时,系统将触发回调函数的事件RTC_EVENT_PERIODIC_IRQ。

在这里插入图片描述

设定日历闹钟时间

在启动RTC后,您可以设置日历闹钟时间。通过使用R_RTC_C_CalendarAlarmSet(&g_rtc0_ctrl, &set_alarm_time);函数,可以设定闹钟时间。具体的时间参数可以通过修改set_alarm_time变量来调整。具体设置方法如下。
在这个示例中,我们仅设置了0点0分进行闹钟触发,而且只在周三触发。

//RTC闹钟变量
rtc_alarm_time_t set_alarm_time=
{
     .time_minute=00,
     .time_hour=0,
     .sunday_match=0 , ///< Enable the alarm on Sunday
     .monday_match=0 , ///< Enable the alarm on Monday
     .tuesday_match=1 , ///< Enable the alarm on Tuesday
     .wednesday_match=0 , ///< Enable the alarm on Wednesday
     .thursday_match=0 ,///< Enable the alarm on Thursday
     .friday_match=0 ,///< Enable the alarm on Friday
     .saturday_match=0 ,//

    };

在这里插入图片描述

回调函数

可以触发进入回调函数的事件如下所示,RTC_EVENT_PERIODIC_IRQ为设置的实时性事件,例如1s一次,RTC_EVENT_ALARM_IRQ为闹钟事件。

在这里插入图片描述

//RTC回调函数
volatile bool rtc_flag = 0;//RTC延时1s标志位
volatile bool rtc_alarm_flag = 0;//RTC闹钟
/* Callback function */
void rtc_callback(rtc_callback_args_t *p_args)
{
    /* TODO: add your own code here */
    if(p_args->event == RTC_EVENT_PERIODIC_IRQ)
        rtc_flag=1;
    else if(p_args->event == RTC_EVENT_ALARM_IRQ)
        rtc_alarm_flag=1;
}

R_RTC_C_Open函数

R_RTC_C_Open函数可以开启RTC。

在这里插入图片描述
同时在主程序中开启RTC已经设置时间和闹钟。

/**********************RTC开启***************************************/
    /* Initialize the RTC module*/
    err = R_RTC_C_Open(&g_rtc0_ctrl, &g_rtc0_cfg);
    /* Handle any errors. This function should be defined by the user. */
    assert(FSP_SUCCESS == err);

    /* Set the RTC clock source. Can be skipped if "Set Source Clock in Open" property is enabled. */
    R_RTC_C_ClockSourceSet(&g_rtc0_ctrl);

    /* R_RTC_CalendarTimeSet must be called at least once to start the RTC */
    R_RTC_C_CalendarTimeSet(&g_rtc0_ctrl, &set_time);
    /* Set the periodic interrupt rate to 1 second */
    R_RTC_C_PeriodicIrqRateSet(&g_rtc0_ctrl, RTC_PERIODIC_IRQ_SELECT_1_SECOND);

    R_RTC_C_CalendarAlarmSet(&g_rtc0_ctrl, &set_alarm_time);
    uint8_t rtc_second= 0;      //秒
    uint8_t rtc_minute =0;      //分
    uint8_t rtc_hour =0;         //时
    uint8_t rtc_day =0;          //日
    uint8_t rtc_month =0;      //月
    uint16_t rtc_year =0;        //年
    uint8_t rtc_week =0;        //周
    rtc_time_t get_time;

同时在主函数的while循环中添加打印和中断处理,以及当前时间显示。

    while(1)
    {
        if(rtc_flag)
        {
            R_RTC_C_CalendarTimeGet(&g_rtc0_ctrl, &get_time);//获取RTC计数时间
            rtc_flag=0;
            rtc_second=get_time.tm_sec;//秒
            rtc_minute=get_time.tm_min;//分
            rtc_hour=get_time.tm_hour;//时
            rtc_day=get_time.tm_mday;//日
            rtc_month=get_time.tm_mon;//月
            rtc_year=get_time.tm_year; //年
            rtc_week=get_time.tm_wday;//周
            printf(" %d y %d m %d d %d h %d m %d s %d w\n",rtc_year+1900,rtc_month,rtc_day,rtc_hour,rtc_minute,rtc_second,rtc_week);

            uint8_t num1,num2,num3,num4;
             //时间显示
            num1=rtc_hour/10;
            num2=rtc_hour%10;

            num3=rtc_minute/10;
            num4=rtc_minute%10;
        }
        if(rtc_alarm_flag)
        {
            rtc_alarm_flag=0;
            printf("/************************Alarm Clock********************************/\n");
        }

        R_BSP_SoftwareDelay(10U, BSP_DELAY_UNITS_MILLISECONDS);



    }

演示效果

设置每过1s打印一次当前时间,设置过1分钟,在0点0分时候闹铃。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/955796.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Go语言strings包与字符串操作:从基础到高级的全面解析

Go语言strings包与字符串操作:从基础到高级的全面解析 引言 Go语言以其简洁、高效和强大的标准库而闻名,其中strings包是处理字符串操作的核心工具。本文将深入探讨Go语言中strings包的功能及其在实际开发中的应用,帮助开发者更好地理解和使用这一工具。 1. strings包概述…

微服务学习-快速搭建

1. 速通版 1.1. git clone 拉取项目代码&#xff0c;导入 idea 中 git clone icoolkj-microservices-code: 致力于搭建微服务架构平台 1.2. git checkout v1.0.1版本 链接地址&#xff1a;icoolkj-microservices-code 标签 - Gitee.com 2. 项目服务结构 3. 实现重点步骤 …

加密货币的基本交易技术指标

是币安交易市场的基本版视图,trading View是有更复杂的参数追踪。币安的交易的技术指标有主图和副图。有很多指标&#xff0c;让ai解释一下相关概念和意义。加密货币交易中可能遇到的主图指标及其含义&#xff1a; 1. MA&#xff08;移动平均线&#xff0c;Moving Average&…

简单介绍JSONStream的使用

地址 作用 这个模块是根据需要筛选出json数据中自己所需要的数据 使用 var JSONStream require("JSONStream"); var parse require("fast-json-parse"); var fs require("fs");fs.createReadStream("./time.json").pipe(JSONSt…

UOS扩容攻略:迁移home

原文链接&#xff1a;UOS扩容攻略&#xff1a;迁移/home Hello&#xff0c;大家好啊&#xff01;今天给大家带来一篇关于 UOS 扩容攻略&#xff1a;迁移 /home 目录 的文章。相信很多朋友在使用 UOS 系统时&#xff0c;会遇到系统分区空间不足&#xff0c;尤其是 /home 目录存…

RK3588平台开发系列讲解(NPU篇)NPU 驱动的组成

文章目录 一、NPU 驱动组成二、查询 NPU 驱动版本三、查询 rknn_server 版本四、查询 librknn_runtime 版本沉淀、分享、成长,让自己和他人都能有所收获!😄 一、NPU 驱动组成 NPU 驱动版本、rknn_server 版本、librknn_runtime 版本以及 RKNN Toolkit 版本的对应关系尤为重…

【实践】操作系统智能助手OS Copilot新功能测评

一、引言 数字化加速发展&#xff0c;尤其人工智能的发展速度越来越快。操作系统智能助手成为提升用户体验与操作效率的关键因素。OS Copilot借助语言模型&#xff0c;人工智能等&#xff0c;对操作系统的自然语言交互操作 推出很多功能&#xff0c;值得开发&#xff0c;尤其运…

C# OpenCvSharp 部署3D人脸重建3DDFA-V3

目录 说明 效果 模型信息 landmark.onnx net_recon.onnx net_recon_mbnet.onnx retinaface_resnet50.onnx 项目 代码 下载 参考 C# OpenCvSharp 部署3D人脸重建3DDFA-V3 说明 地址&#xff1a;https://github.com/wang-zidu/3DDFA-V3 3DDFA_V3 uses the geometri…

Linux-day08

第17章 大数据定制篇-shell编程 shell编程快速入门 shell变量 设置环境变量 把行号打开 set nu 位置参数变量 预定义变量 在一个脚本中执行了另外一个脚本所以卡住了 CTRLC退出 运算符 operator运算符 条件判断 流程控制 单分支多分支 case语句 for循环 反复的把取出来的i值…

海康工业相机的应用部署不是简简单单!?

作者&#xff1a;SkyXZ CSDN&#xff1a;SkyXZ&#xff5e;-CSDN博客 博客园&#xff1a;SkyXZ - 博客园 笔者使用的设备及环境&#xff1a;WSL2-Ubuntu22.04MV-CS016-10UC 不会吧&#xff1f;不会吧&#xff1f;不会还有人拿到海康工业相机还是一脸懵叭&#xff1f;不会还有人…

ComfyUI-PromptOptimizer:文生图提示优化节点

ComfyUI-PromptOptimizer 是 ComfyUI 的一个自定义节点&#xff0c;旨在优化文本转图像模型的提示。它将用户输入的提示转换为更详细、更多样化、更生动的描述&#xff0c;使其更适合生成高质量的图像。无需本地模型。 1、功能 提示优化&#xff1a;优化用户输入的提示以生成…

力扣 完全平方数

动态规划&#xff0c;找到前几个状态做更新。 题目 从题可看出又是一道dp&#xff0c;只要找到一个最大的平方数&#xff0c;然后往回退到上个状态&#xff0c;然后再用回退的状态加回去这个平方数即加上这一种。注意这里的所含平方数并不是随着数字变大而变大的&#xff0c;因…

使用 Java 开发 Android 应用:Kotlin 与 Java 的混合编程

使用 Java 开发 Android 应用&#xff1a;Kotlin 与 Java 的混合编程 在开发 Android 应用程序时&#xff0c;我们通常可以选择使用 Java 或 Kotlin 作为主要的编程语言。然而&#xff0c;有些开发者可能会想要在同一个项目中同时使用这两种语言&#xff0c;这就是所谓的混合编…

BeanFactory 是什么?它与 ApplicationContext 有什么区别?

谈到Spring&#xff0c;那势必要讲讲容器 BeanFactory 和 ApplicationContext。 BeanFactory是什么&#xff1f; BeanFactory&#xff0c;其实就是 Spring 容器&#xff0c;用于管理和操作 Spring 容器中的 Bean。可能此时又有初学的小伙伴会问&#xff1a;Bean 是什么&#x…

ABP - 缓存模块(1)

ABP - 缓存模块&#xff08;1&#xff09; 1. 与 .NET Core 缓存的关系和差异2. Abp 缓存的使用2.1 常规使用2.2 非字符串类型的 Key2.3 批量操作 3. 额外功能 1. 与 .NET Core 缓存的关系和差异 ABP 框架中的缓存系统核心包是 Volo.Abp.Caching &#xff0c;而对于分布式缓存…

SWD仿真接口(for ARM)的使用方法

概述: JTAG JTAG代表联合测试行动小组(定义JTAG标准的小组),旨在作为测试板的一种方式。JTAG允许用户与微控制器的各个部分进行对话。在许多情况下,这涉及一组指令或对电路板进行编程。JTAG标准定义了5个引脚: TCK: Test Clock TMS: Test Mode Select TDI: Test Data-…

Linux UDP 编程详解

一、引言 在网络编程领域&#xff0c;UDP&#xff08;User Datagram Protocol&#xff0c;用户数据报协议&#xff09;作为一种轻量级的传输层协议&#xff0c;具有独特的优势和适用场景。与 TCP&#xff08;Transmission Control Protocol&#xff0c;传输控制协议&#xff0…

OpenCV相机标定与3D重建(60)用于立体校正的函数stereoRectify()的使用

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 为已校准的立体相机的每个头计算校正变换。 cv::stereoRectify 是 OpenCV 中用于立体校正的函数&#xff0c;它基于已知的相机参数和相对位置&am…

AWS物联网连接的数据记录器在冰川环境中的性能比较:Campbell CR1000X与ESP32开源

论文标题 中文&#xff1a;AWS物联网连接的数据记录器在冰川环境中的性能比较&#xff1a;Campbell CR1000X与ESP32开源 英文&#xff1a;Performance comparison of AWS IoT connected dataloggers in glacier environments: Campbell CR1000X vs. ESP32 Open source 作者信…

K8S 节点选择器

今天我们来实验 pod 调度的 nodeName 与 nodeSelector。官网描述如下&#xff1a; 假设有如下三个节点的 K8S 集群&#xff1a; k8s31master 是控制节点 k8s31node1、k8s31node2 是工作节点 容器运行时是 containerd 一、镜像准备 1.1、镜像拉取 docker pull tomcat:8.5-jre8…