Python对象的序列化和反序列化工具:Joblib与Pickle

在Python中,序列化是将内存中的对象转换为可存储或传输的格式的过程。常见的序列化格式有JSONYAMLPickleJoblib等。其中,PickleJoblib是最常用的用于序列化和反序列化Python对象的工具。虽然这两者有很多相似之处,但它们在某些方面有所不同,适用于不同的场景。

本文将详细介绍JoblibPickle的区别,以及在实际应用中选择它们的考虑因素。

1. Pickle简介

Pickle是Python标准库中的模块,专门用于对象的序列化和反序列化。它可以将Python中的大多数对象(如字典、列表、类实例等)转化为字节流,从而能够存储到磁盘或者通过网络传输,反序列化则将字节流转回原本的对象。

Pickle的特点:

  • Python标准库pickle是Python自带的模块,使用起来非常简单,不需要额外安装。
  • 支持Python对象:支持多种Python对象,包括自定义类的实例、字典、列表等。
  • 二进制和文本模式:可以选择以二进制模式或文本模式存储序列化数据。
  • 可移植性差:虽然pickle格式在不同Python环境中能很好地工作,但它并不适用于跨语言传输或长时间存储。

Pickle使用示例

import pickle 


# 序列化对象 
data = {'name': 'Alice', 'age': 30, 'score': [90, 95, 88]} 
with open('data.pkl', 'wb') as f: 
    pickle.dump(data, f) 

# 反序列化对象 
with open('data.pkl', 'rb') as f: 
    loaded_data = pickle.load(f) 
print(loaded_data)

2. Joblib简介

Joblib是一个外部库,专门用于高效地序列化和反序列化Python对象,尤其是大规模数据结构和机器学习模型。它通常在处理大型数值数组(例如NumPy数组或scikit-learn的机器学习模型)时表现优越。

Joblib的特点:

  • 高效处理大数据:与Pickle相比,Joblib更适合序列化大型数组和对象。它在存储NumPy数组等大数据时,能够自动进行压缩,从而减少存储空间。
  • 并行计算支持Joblib还支持将数据存储过程分布到多个进程上,提高序列化和反序列化的速度。
  • 优化的压缩算法:默认支持GZIP压缩,可以减少存储空间和加速磁盘I/O。
  • 不适合小型数据:对于小型数据,Joblib的优势并不明显,反而可能会带来额外的开销。

Joblib使用示例

from joblib import dump, load 

# 序列化对象 
data = {'name': 'Bob', 'age': 25, 'score': [80, 85, 89]} 
dump(data, 'data.joblib') 

# 反序列化对象 
loaded_data = load('data.joblib') 
print(loaded_data)

3. Pickle与Joblib的区别

特性PickleJoblib
用途通用的Python对象序列化工具主要用于序列化大型数据和机器学习模型
支持的对象适用于几乎所有Python对象(如字典、类实例等)优化用于NumPy数组和scikit-learn模型
性能适合小型和中等大小的对象对大数据(如NumPy数组)有更好的支持
压缩支持无内建压缩(需要手动压缩)默认支持压缩(如GZIP、LZ4等)
跨语言兼容性不适用于跨语言(仅适用于Python)不适用于跨语言(仅适用于Python)
易用性Python标准库,自带需要安装joblib
序列化速度对于小对象较快对于大型数据结构更加高效
存储空间没有自动压缩支持压缩,减少存储空间

4. 选择Pickle还是Joblib?

选择Pickle还是Joblib,通常取决于对象的大小和应用场景:

  • 使用Pickle
    • 如果数据量较小或数据类型多样(如包含多个Python数据类型或自定义对象),Pickle是一个简洁且高效的选择。
    • 适用于较简单的存储需求或对于数据量要求不高的场景。
  • 使用Joblib
    • 如果需要序列化的大数据是数值型数据(如NumPy数组),或者是机器学习模型(如scikit-learn的模型),Joblib会提供更高效的性能。
    • 如果数据需要压缩存储(尤其是需要处理大量的数值数据或大规模模型),Joblib的压缩算法能大幅减少磁盘占用。

5. 总结

  • Pickle适合大部分常规的Python对象序列化工作,尤其是数据较小的情况。
  • Joblib则更适用于处理大数据和机器学习模型,尤其是需要压缩和高效存储的场景。

通过合理选择PickleJoblib,可以使得序列化过程更加高效,并为大规模数据的存储提供支持。在机器学习、数据分析和科学计算等领域,Joblib通常是更优的选择,而在一般的Python开发中,Pickle仍然是一个简单、实用的工具。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/951689.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Elasticsearch:优化的标量量化 - 更好的二进制量化

作者:来自 Elastic Benjamin Trent 在这里,我们解释了 Elasticsearch 中的优化标量量化以及如何使用它来改进更好的二进制量化 (Better Binary Quantization - BBQ)。 我们的全新改进版二进制量化 (Better Binary Quantization - BBQ) 索引现在变得更强大…

【数据库】六、数据库设计

文章目录 六、数据库设计1 数据库设计步骤1.1 规划阶段1.2 需求分析1.3 概念设计阶段(重点)1.4 逻辑设计阶段(重点)1.5 物理设计阶段1.6 数据库的实现1.7 数据库运行与维护 2 概念模型设计2.1 ER模型2.1.1 ER模型的基本元素2.1.2 联系的设计2.1.3 采用ER模型的概念设计2.1.4 ER…

onLoad 生命周期函数是否执行取决于跳转的方式和小程序的页面栈管理机制

文章目录 1. 页面跳转方式2. 你的场景分析3. 页面生命周期4. 总结5. 建议 在微信小程序中,页面跳转时, onLoad 生命周期函数是否执行取决于跳转的方式和小程序的页面栈管理机制。以下是详细说明: 1. 页面跳转方式 微信小程序提供了多种页面…

51c~Pytorch~合集4

我自己的原文哦~ https://blog.51cto.com/whaosoft/12311033 一、Pytorch~训练-使用 这里介绍了Pytorch中已经训练好的模型如何使用 Pytorch中提供了很多已经在ImageNet数据集上训练好的模型了,可以直接被加载到模型中进行预测任务。预训练模型存放在Pytorch的…

深度学习的原理和应用

一、深度学习的原理 深度学习是机器学习领域的一个重要分支,其原理基于多层神经网络结构和优化算法。以下是深度学习的核心原理: 多层神经网络结构:深度学习模型通常由多层神经元组成,这些神经元通过权重和偏置相互连接。输入数据…

基于人工智能的公司logo设计生成方法

随着科技的飞速发展,人工智能(AI)已经深入到我们生活的方方面面。其中,基于AI的公司logo设计生成方法,不仅为品牌形象的塑造提供了新的思路,也为企业带来了前所未有的设计体验。本文将详细探讨这一新兴的、…

BO-CNN-BiLSTM-Multihead-Attention,贝叶斯优化CNN-BiLSTM融合多头注意力机制多变量回归预测

BO-CNN-BiLSTM-Multihead-Attention,贝叶斯优化CNN-BiLSTM融合多头注意力机制多变量回归预测 目录 BO-CNN-BiLSTM-Multihead-Attention,贝叶斯优化CNN-BiLSTM融合多头注意力机制多变量回归预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.Ma…

WPF系列九:图形控件EllipseGeometry

简介 EllipseGeometry用于绘制一个椭圆的形状。它通常与其他图形元素结合使用,比如 Path 或者作为剪切区域来定义其他元素的外形。 定义椭圆:EllipseGeometry 用来定义一个椭圆或者圆的几何形状。参与绘制:可以被用作 Path 元素的数据&…

ue5动画重定向,一键重定向。ue4小白人替换成ue5

这就是我们下载的 初学者动画内容包 点击设置选中列 绿色的是动画 黄色的关卡 蓝色是蓝图 ctrla 全选 ctrl鼠标左键 选中所有动画 重定向动画资产 不要选错,只要绿色 选择目标网格体 选择所有的绿色 动画 导出动画 添加前缀ycn 导出 一定要提前新建好存放的…

服务器漏洞修复解决方案

漏洞1、远程桌面授权服务启用检测【原理扫描】 Windows Remote Desktop Licensing Service is running: Get Server version: 0x60000604 1、解决方案:建议禁用相关服务避免目标被利用 方法一:使用服务管理器 打开“运行”对话框(WinR&am…

uniapp 微信小程序内嵌h5实时通信

描述: 小程序webview内嵌的h5需要向小程序实时发送消息,有人说postMessage可以实现,所以试验一下,结果是实现不了实时,只能在特定时机后退、组件销毁、分享时小程序才能接收到信息(小程序为了安全等考虑做了…

案例解读 | 香港某多元化综合金融企业基础监控+网管平台建设实践

PART01 项目背景 01客户简介案例客户是一家创立20多年的香港某多元化综合金融企业,其业务范围涵盖证券、期货、资产管理、财富管理等,凭借广泛的业务网络和多元化的金融服务产品,在市场中拥有显著的影响力。02痛点分析随着业务版图的持续拓展…

LabVIEW实现动态水球图的方法

水球图是一种直观展示百分比数据的图表,常用于数据监测与展示。LabVIEW 虽不直接支持水球图绘制,但可通过图片控件动态绘制波形,或借助 HTMLCSS 的 Web 控件实现。此外,还可以结合 Python 等第三方工具生成水球图,LabV…

Simulink中的正弦波模块学习【Sine Wave】

Simulink中的正弦波模块学习 Simulink库中的Sine Wave模块 如下图所示为MATLAB Simulink中的正弦波模块 其元器件库位置为Simulink→Sources→Sine Wave 各项设置参数如下, 点击Help可查看详细信息 正弦波的数学表达式为 y A sin ⁡ ( ω x φ ) k y A \sin(\omega x \va…

maven高级(day15)

Maven 是一款构建和管理 Java 项目的工具 分模块设计与开发 所谓分模块设计,顾名思义指的就是我们在设计一个 Java 项目的时候,将一个 Java 项目拆分成多 个模块进行开发。 分模块设计我们在进行项目设计阶段,就可以将一个大的项目拆分成若干…

Vite源码学习分享(一)

!](https://i-blog.csdnimg.cn/direct/971c35b61c57402b95be91d2b4965d85.png) 同一个项目 vite VS webpack启动速度对比

C#里使用libxl设置EXCEL里公式计算的例子

在EXCEL的使用里,经常使用的是公式功能, 为什么会这样说呢? 因为公式是一种自动化计算工具,并且可以固化人类的智慧,相当于把复杂的计算功能嵌入到固定的数据处理了。比如一个经验丰富的财务人员,可以编制一个复杂公式计算的表格,只要一个不懂财务的人员,输入每个人的…

使用证件照制作软件的常见问题及解决方案

在数字化时代,证件照的制作变得越来越简单。借助各种证件照制作软件,我们可以轻松在家中制作出符合要求的证件照。然而,用户在使用这些软件时,可能会遇到一些常见问题。为了帮助您顺利制作出满意的证件照,我们整理了一…

【LeetCode Hot100 贪心算法】 买卖股票的最佳时机、跳跃游戏、划分字母区间

贪心算法 买卖股票的最佳时机买卖股票的最佳时机II跳跃游戏跳跃游戏II划分字母区间 买卖股票的最佳时机 给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。 你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的…

LLaMA-Factory web微调大模型并导出大模型

LLaMA-Factory 开源大模型如LLaMA,Qwen,Baichuan等主要都是使用通用数据进行训练而来,其对于不同下游的使用场景和垂直领域的效果有待进一步提升,衍生出了微调训练相关的需求,包含预训练(pt)&am…