BO-CNN-BiLSTM-Multihead-Attention,贝叶斯优化CNN-BiLSTM融合多头注意力机制多变量回归预测

BO-CNN-BiLSTM-Multihead-Attention,贝叶斯优化CNN-BiLSTM融合多头注意力机制多变量回归预测

目录

    • BO-CNN-BiLSTM-Multihead-Attention,贝叶斯优化CNN-BiLSTM融合多头注意力机制多变量回归预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现贝叶斯优化CNN-BiLSTM融合多头注意力机制多变量回归预测,BO-CNN-BiLSTM-Multihead-Attention;

MATLAB实现BO-CNN-BiLSTM-Multihead-Attention贝叶斯优化卷积神经网络-双向长短期记忆网络融合多头注意力机制多变量回归预测。多头自注意力层 (Multihead-Self-Attention):Multihead-Self-Attention多头注意力机制是一种用于模型关注输入序列中不同位置相关性的机制。它通过计算每个位置与其他位置之间的注意力权重,进而对输入序列进行加权求和。注意力能够帮助模型在处理序列数据时,对不同位置的信息进行适当的加权,从而更好地捕捉序列中的关键信息。在时序预测任务中,注意力机制可以用于对序列中不同时间步之间的相关性进行建模。
2.data为数据集,格式为excel,7个输入特征,1个输出特征,多输入单输出回归预测,main.m是主程序,其余为函数文件,无需运行;

3.贝叶斯优化参数为:学习率,隐含层节点,正则化参数;

4.评价指标包括:R2、MAE、MSE、RMSE和MAPE等;

5.运行环境matlab2023b及以上。

多头注意力机制(Multi-Head Attention)是一种用于处理序列数据的注意力机制的扩展形式。它通过使用多个独立的注意力头来捕捉不同方面的关注点,从而更好地捕捉序列数据中的相关性和重要性。在多变量时间序列预测中,多头注意力机制可以帮助模型对各个变量之间的关系进行建模,并从中提取有用的特征。贝叶斯优化卷积神经网络-长短期记忆网络融合多头注意力机制多变量时间序列预测模型可以更好地处理多变量时间序列数据的复杂性。它可以自动搜索最优超参数配置,并通过卷积神经网络提取局部特征,利用LSTM网络建模序列中的长期依赖关系,并借助多头注意力机制捕捉变量之间的关联性,从而提高时间序列预测的准确性和性能。
在这里插入图片描述
在这里插入图片描述

程序设计

  • 完整代码私信回复BO-CNN-BiLSTM-Multihead-Attention,Maltab贝叶斯优化CNN-BiLSTM融合多头注意力机制多变量回归预测
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%% 导入数据
res=xlsread('data.xlsx');

%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度

%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
%%  划分训练集和测试集
M = size(P_train, 2);
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  优化算法参数设置
%参数取值上界(学习率,隐藏层节点,正则化系数)
fitness = @fical;

%%  贝叶斯优化参数范围






参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128267322?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128234920?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/951678.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

WPF系列九:图形控件EllipseGeometry

简介 EllipseGeometry用于绘制一个椭圆的形状。它通常与其他图形元素结合使用,比如 Path 或者作为剪切区域来定义其他元素的外形。 定义椭圆:EllipseGeometry 用来定义一个椭圆或者圆的几何形状。参与绘制:可以被用作 Path 元素的数据&…

ue5动画重定向,一键重定向。ue4小白人替换成ue5

这就是我们下载的 初学者动画内容包 点击设置选中列 绿色的是动画 黄色的关卡 蓝色是蓝图 ctrla 全选 ctrl鼠标左键 选中所有动画 重定向动画资产 不要选错,只要绿色 选择目标网格体 选择所有的绿色 动画 导出动画 添加前缀ycn 导出 一定要提前新建好存放的…

服务器漏洞修复解决方案

漏洞1、远程桌面授权服务启用检测【原理扫描】 Windows Remote Desktop Licensing Service is running: Get Server version: 0x60000604 1、解决方案:建议禁用相关服务避免目标被利用 方法一:使用服务管理器 打开“运行”对话框(WinR&am…

uniapp 微信小程序内嵌h5实时通信

描述: 小程序webview内嵌的h5需要向小程序实时发送消息,有人说postMessage可以实现,所以试验一下,结果是实现不了实时,只能在特定时机后退、组件销毁、分享时小程序才能接收到信息(小程序为了安全等考虑做了…

案例解读 | 香港某多元化综合金融企业基础监控+网管平台建设实践

PART01 项目背景 01客户简介案例客户是一家创立20多年的香港某多元化综合金融企业,其业务范围涵盖证券、期货、资产管理、财富管理等,凭借广泛的业务网络和多元化的金融服务产品,在市场中拥有显著的影响力。02痛点分析随着业务版图的持续拓展…

LabVIEW实现动态水球图的方法

水球图是一种直观展示百分比数据的图表,常用于数据监测与展示。LabVIEW 虽不直接支持水球图绘制,但可通过图片控件动态绘制波形,或借助 HTMLCSS 的 Web 控件实现。此外,还可以结合 Python 等第三方工具生成水球图,LabV…

Simulink中的正弦波模块学习【Sine Wave】

Simulink中的正弦波模块学习 Simulink库中的Sine Wave模块 如下图所示为MATLAB Simulink中的正弦波模块 其元器件库位置为Simulink→Sources→Sine Wave 各项设置参数如下, 点击Help可查看详细信息 正弦波的数学表达式为 y A sin ⁡ ( ω x φ ) k y A \sin(\omega x \va…

maven高级(day15)

Maven 是一款构建和管理 Java 项目的工具 分模块设计与开发 所谓分模块设计,顾名思义指的就是我们在设计一个 Java 项目的时候,将一个 Java 项目拆分成多 个模块进行开发。 分模块设计我们在进行项目设计阶段,就可以将一个大的项目拆分成若干…

Vite源码学习分享(一)

!](https://i-blog.csdnimg.cn/direct/971c35b61c57402b95be91d2b4965d85.png) 同一个项目 vite VS webpack启动速度对比

C#里使用libxl设置EXCEL里公式计算的例子

在EXCEL的使用里,经常使用的是公式功能, 为什么会这样说呢? 因为公式是一种自动化计算工具,并且可以固化人类的智慧,相当于把复杂的计算功能嵌入到固定的数据处理了。比如一个经验丰富的财务人员,可以编制一个复杂公式计算的表格,只要一个不懂财务的人员,输入每个人的…

使用证件照制作软件的常见问题及解决方案

在数字化时代,证件照的制作变得越来越简单。借助各种证件照制作软件,我们可以轻松在家中制作出符合要求的证件照。然而,用户在使用这些软件时,可能会遇到一些常见问题。为了帮助您顺利制作出满意的证件照,我们整理了一…

【LeetCode Hot100 贪心算法】 买卖股票的最佳时机、跳跃游戏、划分字母区间

贪心算法 买卖股票的最佳时机买卖股票的最佳时机II跳跃游戏跳跃游戏II划分字母区间 买卖股票的最佳时机 给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。 你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的…

LLaMA-Factory web微调大模型并导出大模型

LLaMA-Factory 开源大模型如LLaMA,Qwen,Baichuan等主要都是使用通用数据进行训练而来,其对于不同下游的使用场景和垂直领域的效果有待进一步提升,衍生出了微调训练相关的需求,包含预训练(pt)&am…

30天开发操作系统 第 12 天 -- 定时器 v1.0

前言 定时器(Timer)对于操作系统非常重要。它在原理上却很简单,只是每隔一段时间(比如0.01秒)就发送一个中断信号给CPU。幸亏有了定时器,CPU才不用辛苦地去计量时间。……如果没有定时器会怎么样呢?让我们想象一下吧。 假如CPU看不到定时器而仍想计量时…

HOW - Form 表单 label 和 wrapper 对齐场景

一、背景 在日常使用 表单 时&#xff0c;我们一般有如下布局&#xff1a; 可以通过 Form 表单提供的配置直接设置&#xff1a; <Formform{form}labelCol{{ span: 4 }}wrapperCol{{ span: 20 }}onFinish{handleSubmit}><Form.Itemlabel"输入框"name"…

G-Star Landscape 2.0 重磅发布,助力开源生态再升级

近日&#xff0c;备受行业瞩目的 G-Star Landscape 迎来了其 2.0 版本的发布&#xff0c;这一成果标志着 GitCode 在开源生态建设方面又取得了重要进展。 G-Star Landscape仓库链接&#xff1a; https://gitcode.com/GitCode-official-team/G-Star-landscape 2024 GitCode 开…

智能化文档开发(DI)

这个文档涉及到多模态&#xff08;文本、发票、订单、语音&#xff09; 对于普通的文本&#xff0c;我们希望对某些实体的某些属性挖空生成文档模版&#xff0c;并根据预设字段填空最后生成正式文件对于发票、订单&#xff0c;我们想提取它的字段信息&#xff0c;写入DB对于一些…

【Go】:图片上添加水印的全面指南——从基础到高级特性

前言 在数字内容日益重要的今天&#xff0c;保护版权和标识来源变得关键。为图片添加水印有助于声明所有权、提升品牌认知度&#xff0c;并防止未经授权的使用。本文将介绍如何用Go语言实现图片水印&#xff0c;包括静态图片和带旋转、倾斜效果的文字水印&#xff0c;帮助您有…

国产编辑器EverEdit - 扩展脚本:关闭所有未修改文档

1 扩展脚本&#xff1a;关闭所有未修改文档 1.1 应用场景 当用户打开过多文档时&#xff0c;部分文档已经修改&#xff0c;而大部分没有修改&#xff0c;为了减少在众多已打开文档中来回跳转的不便&#xff0c;可以将没有修改的文档全部关闭&#xff0c;但目前提供的快速关闭窗…

Java Web开发进阶——Spring Security基础与应用

Spring Security是Spring框架的核心模块之一&#xff0c;用于保护Web应用程序和微服务的安全。它提供强大的认证和授权功能&#xff0c;并与Spring生态系统无缝集成。本节将详细介绍Spring Security的基础知识及其在实际项目中的应用。 1. Spring Security概述与功能 1.1 什么…