OpenCV 学习记录:首篇

最近在学习机器视觉,希望能通过记录博客的形式来鞭策自己坚持学完,同时也把重要的知识点记录下来供参考学习。

1. OpenCV 介绍与模块组成

什么是 OpenCV?

OpenCV (Open Source Computer Vision Library) 是一个开源的计算机视觉和机器学习软件库。它由 Intel 开发,旨在帮助开发人员在实时计算机视觉应用中解决各种问题。OpenCV 提供了丰富的工具和函数,能够支持图像处理、视频分析、物体检测、人脸识别、机器学习等功能,广泛应用于自动驾驶、安防监控、医学图像分析等领域。

OpenCV 主要功能

OpenCV 提供了大量的计算机视觉和图像处理工具。常见的功能包括:

  • 图像处理:图像的读取、显示、转换、增强等操作。
  • 特征提取与匹配:如SIFT、SURF、ORB等特征检测算法。
  • 目标检测与识别:如人脸检测、物体检测等。
  • 视频分析:视频流处理、运动检测、目标追踪等。
  • 机器学习:OpenCV 还包含了一些机器学习算法,如支持向量机(SVM)、K近邻(KNN)等。

OpenCV 模块组成

OpenCV 由多个模块组成,主要包括:

  1. core:基础模块,包含最基本的图像处理功能,如矩阵、图像数据结构、文件 I/O 等。
  2. imgproc:图像处理模块,提供常见的图像处理算法,如滤波、边缘检测、直方图等。
  3. imgcodecs:图像编解码模块,支持各种图像格式的读取和保存。
  4. highgui:图形用户界面模块,用于创建窗口、显示图像、读取键盘输入等。
  5. video:视频分析模块,提供视频捕获、处理和分析工具。
  6. features2d:特征提取模块,支持 SIFT、SURF、ORB 等特征检测和匹配。
  7. ml:机器学习模块,提供支持向量机(SVM)、K近邻(KNN)等常用机器学习算法。
  8. dnn:深度学习模块,支持通过 OpenCV 使用深度学习框架(如 Caffe、TensorFlow 等)进行推理。

2. 开发环境搭建(Python 语言)

安装 Python 和 OpenCV

在开发 OpenCV 项目之前,您需要安装 Python 和 OpenCV 库。以下是安装的详细步骤:

1. 安装 Python

如果您还没有安装 Python,可以去官方网站下载并安装:

  • 官方网站:Download Python | Python.org

安装过程中建议勾选 Add Python to PATH 选项,这样可以在命令行中直接使用 python 命令。

2. 安装 OpenCV

OpenCV 提供了 Python 的接口,因此安装起来非常简单。您只需要使用 Python 的包管理工具 pip 来安装:

pip install opencv-python

如果您需要 OpenCV 的完整版本,包括一些额外的功能(如深度学习支持),可以安装:

pip install opencv-contrib-python

备注:如果您使用的是 Jupyter Notebook 或 Anaconda,可以在这些环境中使用类似的命令安装 OpenCV。

3. 安装其他依赖

对于一些高级功能(如视频捕获或图像展示),您可能还需要安装其他依赖。可以通过以下命令安装:

pip install numpy matplotlib notebook

numpy 是 OpenCV 中进行数值运算的基础库,matplotlib 可以用来在 Jupyter 中显示图像notebook可以用来执行代码并做记录。


3. 代码演示 - 读取和显示图像

接下来,我们通过代码演示,帮助您了解如何在 OpenCV 中进行基础的图像处理操作。

首先,我们需要用 cv2.imread() 读取一张图像,并用 cv2.imshow() 显示它。

示例代码:
import cv2

# 读取图像
image = cv2.imread('/path/to/example.jpg')  # 图像路径

# 显示图像
cv2.imshow('Original Image', image)

# 等待用户按键
cv2.waitKey(0)

# 关闭所有窗口
cv2.destroyAllWindows()

代码解释:
  • cv2.imread():读取图像并返回一个 NumPy 数组。
  • cv2.imshow():将图像显示在窗口中。
  • cv2.waitKey(0):等待用户按下任意键关闭窗口。

总结

在本教程中,我们介绍了 OpenCV 库的基本概念和模块组成,演示了如何在 Python 环境中搭建 OpenCV 开发环境,并通过简单的代码示例展示了图像的读取和显示操作。

免费征集 | 自动化需求

还在为重复性工作头疼?数据处理耗时过长?
我们正在免费征集 自动化需求,无论是文件整理、报表生成、邮件处理还是网页爬取,只要您有需求,我愿意免费为您编写脚本,让繁琐任务一键完成!

🎯 我们能帮您做什么?
文件处理:批量重命名、分类归档、数据清洗。
数据处理:Excel 自动化、报表生成、跨平台同步。
网页爬取:自动获取产品信息、市场数据或文章内容
邮件管理:自动发送邮件、下载附件、分类归档。
日常任务:自动安排日程、提醒任务、同步到项目管理工具。
其他需求:只要您想到的,我们都愿意尝试!
📩 如何提交需求?
CSDN私信或直接留言。
立即行动,释放您的生产力!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/940381.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

白嫖内网穿透之神卓互联Linux安装教程(树莓派)

最近家里有一个树莓派,捣鼓来去不知道干嘛,于是打算作为内网穿透盒子用,于是百度了一下,发现神卓互联还不错,可以让外网请求通过各种复杂的路由和防火墙访问到内网的服务。 以下是在Linux树莓派系统上安装神卓互联客户…

C语言入门(一):A + B _ 基础输入输出

前言 本专栏记录C语言入门100例,这是第(一)例。 目录 一、【例题1】 1、题目描述 2、代码详解 二、【例题2】 1、题目描述 2、代码详解 三、【例题3】 1、题目描述 2、代码详解 四、【例题4】 1、题目描述 2、代码详解 一、【例…

深度学习实验十七 优化算法比较

目录 一、优化算法的实验设定 1.1 2D可视化实验(被优化函数为) 1.2 简单拟合实验 二、学习率调整 2.1 AdaGrad算法 2.2 RMSprop算法 三、梯度修正估计 3.1 动量法 3.2 Adam算法 四、被优化函数变为的2D可视化 五、不同优化器的3D可视化对比 …

【计算机组成1】计算机系统

一、计算机的发展 1、计算机硬件的发展 第一代计算机(1946— 1957 年 )——电子管时代。 第二代计算机(1958 — 1964年)——晶体管时代 第三代计算机(1965— 197 1 年) ——中小规模集成电路时代 第四代计算机(1972年至今)——超大规模集成电路时代 计算机硬件的发展就是逻辑元…

指南: 如何在 MEV 项目中使用 Yul

这对我来说是一个反复出现的故事。我学习了一些 Solidity,发现了一个我想要研究的服务。代码看起来是这样的: Seaport Core: BasicOrderFulfiller.sol Solidity 代码在哪里?人们似乎不再使用普通的 Solidity 代码了 🥲 这种在智能…

每日十题八股-2024年12月19日

1.Bean注入和xml注入最终得到了相同的效果,它们在底层是怎样做的? 2.Spring给我们提供了很多扩展点,这些有了解吗? 3.MVC分层介绍一下? 4.了解SpringMVC的处理流程吗? 5.Handlermapping 和 handleradapter有…

kkfileview代理配置,Vue对接kkfileview实现图片word、excel、pdf预览

kkfileview部署 官网:https://kkfileview.keking.cn/zh-cn/docs/production.html 这个是官网部署网址,这里推荐大家使用docker镜像部署,因为我是直接找运维部署的,所以这里我就不多说明了,主要说下nginx代理配置&am…

SQL语句整理五-StarRocks

文章目录 查看版本号:SPLIT:insert 和 update 结合 select:报错:1064 - StarRocks planner use long time 3000 ms in memo phase:字段增删改: 查看版本号: select current_version(); current…

使用Turtle库实现,鼠标左键绘制路径,用鼠标右键结束绘制,小海龟并沿路径移动

使用Turtle库实现,鼠标左键绘制路径,用鼠标右键结束绘制,小海龟并沿路径移动 Turtle库是Python标准库的一部分,它提供了一种基于命令的图形绘制方式。Turtle模块通过一个“海龟”(Turtle)对象在屏幕上移动…

centos-stream9系统安装docker

如果之前安装过docker需要删除之前的。 sudo dnf -y remove docker docker-client docker-client-latest docker-common docker-latest docker-latest-logrotate docker-logrotate docker-engine 安装yum-utils工具: dnf -y install yum-utils dnf-plugin…

Spark优化----Spark 数据倾斜

目录 数据倾斜的表现: 定位数据倾斜问题: 解决方案一:聚合原数据 避免 shuffle 过程 缩小 key 粒度(增大数据倾斜可能性,降低每个 task 的数据量) 增大 key 粒度(减小数据倾斜可能性&#xff0c…

视频点播系统|Java|SSM|VUE| 前后端分离

【技术栈】 1⃣️:架构: B/S、MVC 2⃣️:系统环境:Windowsh/Mac 3⃣️:开发环境:IDEA、JDK1.8、Maven、Mysql5.7 4⃣️:技术栈:Java、Mysql、SSM、Mybatis-Plus、VUE、jquery,html 5⃣️数据库可…

从想法到实践:Excel 转 PPT 应用的诞生之旅

2024 年 11 月,我着手开发了一款exe应用,其主要功能是读取 Excel 文件中的数据,并生成 PPT 文件。 这款应用看似简单,却给我的商业认知带来了深刻的启发。此前,我与一位老师合作,为其处理 Excel 转 PPT 的…

LabVIEW深海气密采水器测控系统

LabVIEW的深海气密采水器测控系统通过高性价比的硬件选择与自主开发的软件,实现了高精度的温度、盐度和深度测量,并在实际海上试验中得到了有效验证。 项目背景 深海气密采水器是进行海底科学研究的关键工具,用LabVIEW开发了一套测控系统&am…

Fastdfs V6.12.1集群部署(arm/x86均可用)

文章目录 一、 Fastdfs 介绍二、部署 信息三、步骤tracker/storage 机器的 compose 内容storage 机器的 composetracker 与 storage 启动目录层级与配置文件测试测试集群扩容与缩减注意事项 一、 Fastdfs 介绍 FastDFS 是一款高性能的分布式文件系统,特别适合用于存…

使用Miniforge构建数据科学环境

一、背景 最近,有不少公司因为员工在工作电脑上安装和使用Anaconda和Miniconda存在商业风险而禁用这两个软件,员工需要找到一个替代方案,Miniforge成为首选(对习惯使用conda管理python环境的同学) 但实际安装过程中&…

MacOS下PostIn安装配置指南

PostIn是一款开源免费的接口管理工具, 下面介绍私有部署版本的MacOS下安装与配置。私有部署版本更适合有严格数据安全要求的企业,实现对数据和系统的完全控制。   1、MacOS服务端安装 Mac安装包下载地址:下载Mac安…

P6打卡—Pytorch实现人脸识别

🍨 本文为🔗365天深度学习训练营中的学习记录博客🍖 原作者:K同学啊 1.检查GPU import torch import torch.nn as nn import matplotlib.pyplot as plt import torchvisiondevicetorch.device("cuda" if torch.cuda.is_…

Electronjs+Vue如何开发PC桌面客户端(Windows,Mac,Linux)

electronjs官网 https://www.electronjs.org/zh/ Electron开发PC桌面客户端的技术选型非常适合已经有web前端开发人员的团队。能够很丝滑的过渡。 Electron是什么? Electron是一个使用 JavaScript、HTML 和 CSS 构建桌面应用程序的框架。 嵌入 Chromium 和 Node.…

内旋风铣削知识再学习

最近被有不少小伙伴们问到蜗杆加工的一种方式——内旋风铣削加工。关于旋风铣之前出过一篇《什么是旋风铣?》,简要介绍了旋风铣(Whilring)的一些基本内容。本期再重新仔细聊一聊内旋风这种加工方式,可加工的零件种类&a…