以太网链路详情

文章目录

  • 1、交换机
    • 1、常见的概念
      • 1、冲突域
      • 2、广播域
      • 3、以太网卡
        • 1、以太网卡帧
      • 4、mac地址
        • 1、mac地址表示
        • 2、mac地址分类
        • 3、mac地址转换为二进制
    • 2、交换机的工作原理
      • 1、mac地址表
      • 2、交换机三种数据帧处理行为
      • 3、为什么会泛洪
      • 4、转发
      • 5、丢弃
    • 3、mac表怎么获得
    • 4、同网段数据通信全过程
      • 1、数据封装过程
      • 2、泛洪数据帧
      • 3、学习mac地址和主机回复
      • 4、总结
    • 5、不同网段数据通信过程

1、交换机

1、常见的概念

1、冲突域

  • 冲突域就是连接同一个共享介质的所有节点的集合,冲突域内所有节点竞争同一个带宽,一个节点发出的报文(无论是单播,组播,广播),其他节点都可以收到

  • 交换机上面的接口都是互相连接的,因此每一个接口相当于一个冲突域,不同的接口发送和数据独立,各个接口属于不同的冲突域,互联的主机不需要担心流量对数据发送冲突的影响了

  • 就是以前是一个主机发送数据,其他的主机不能发送数据,只能接收,但是交换机的话,每个接口都是互相连接的,因此可以不同主机可以同时发送数据,和接收数据

img

  • 一个节点发送的是广播的话,就会泛洪,如果接收的是单播的话,就只会发送给一个节点,因此交换机组成的局域网是广播域,但是隔离了冲突域

2、广播域

  • 就是广播报文会访问所有的主机,同一个广播域内的主机都能收到广播报文

  • 有一个主机发送了广播的话,交换机会发送给所有的接口都会转发,但是路由器的话,不会进行泛洪,不会转换广播,起到了一个隔离广播的作用

3、以太网卡

  • 路由器和PC的连接在一起的话,可以配置ip地址的,路由器接口上配置一个ip,然后pc上面也配置了一个ip地址,如果在同一个网段的话,就可以实现互访,所以的话,PC网卡和路由器网卡本质上没有区别,基于数据包来进行处理

  • 交换机上面的接口如果配置不了ip的话,就是一个二层设备,只具备二层的功能,以帧为单位进行数据转发,没有对包进行分析的能力,是一个传统的二层设备

1、以太网卡帧

img

  • 在以太网中,数据通信是基本单位是以太帧,有2个标准

  • 一个是Ethernet_ll格式和另外一个是IEEE802.3格式

  • 客户端发送的是Ethernet_ll数据的帧格式,维护网络正常工作协议的是IEE 802.3帧格式

  • Ethernet_ll类型,是0800上层就是ipv4的协议,是0806的话,上层就是arp协议的

  • IEEE802.3类型LLC

4、mac地址

  • 网络中唯一标识一个网卡,唯一的名字

  • mac地址6个字节,48bit,16进制

  • 为什么有了mac地址,在接入设备的时候还是需要配置ip地址,因为路由器是通过ip地址来进行寻址的,交换机是根据在mac地址在链路上面进行通信

  • 不要ip地址,在链路上面通过mac地址进行实现通信,在链路上面只有mac地址可以通信

  • 因此的话,ip地址和mac地址结合使用,非常的强大,在链路上面根据mac地址,在不同的网段上面,路由表根据ip地址进行转发

  • ip地址是唯一标识网络中一个节点,可以通过ip地址进行不同网段的数据访问,可以改变的,在同一个网段上面是唯一的

  • ip地址和mac地址,mac地址在同一个链路上面通信,ip地址可以跨链路访问

1、mac地址表示
  • mac地址采用十六进制表示

  • ox表示这个数据是16进制的

  • 00 1E 10 DD DD 02 6个字节

  • 转换成二进制的话, 0000 0000 0001 1110 一个数字转换成4bite来进行表示

2、mac地址分类
  • 单播地址,第8个bite等于0的就是单播,前面是24位,就是oui就是厂商代码

  • 组播地址,第8个bite等于1的话就是组播,发送给一堆接口

  • 广播地址,bite全是1的位广播

  • 6C就是单播地址,A是10,B是11,C是12,所以的话,这个就是一个单播

  • 交换机根据目标MAC地址的第8个比特位查找

3、mac地址转换为二进制

# 一个十六进制的数等于4个二进制的数
步骤 1:把 6 转成二进制
十六进制 6 对应十进制 6。
将十进制 6 转换为二进制:
6 ÷ 2 = 3,余数 0
3 ÷ 2 = 1,余数 1
1 ÷ 2 = 0,余数 1
从下到上排列余数:110
补齐 4 位:0110
步骤 2:把 C 转成二进制
十六进制 C 对应十进制 12(A=10, B=11, C=12)。
将十进制 12 转换为二进制:
12 ÷ 2 = 6,余数 0
6 ÷ 2 = 3,余数 0
3 ÷ 2 = 1,余数 1
1 ÷ 2 = 0,余数 1
从下到上排列余数:1100

2、交换机的工作原理

img

  • 主机1发送数据到PC2上面,交换机学习帧的地址MAC地址,然后在MAC地址表中查询该帧的目的mac地址,并将这个帧从对应的端口转发出去,arp协议

  • 二层转发只用看mac地址即可,不需要看IP地址

1、mac地址表

  • 每个交换机都会有一个mac地址表,存放了mac地址与交换机端口编号之间的映射关系

  • 通过这个接口就能达到主机上面

2、交换机三种数据帧处理行为

  • 泛洪,就是一个接口收到数据帧后,就泛洪到所有的主机

  • 转发,就是从一个特定的接口转发到某个接口

  • 丢弃,一个接口接收的数据,直接丢弃,不进行转发

3、为什么会泛洪

  • 交换机如果接收的是单播帧,交换机查询mac地址表,查询不到,就被称为未知单播帧,交换机对该单播帧执行泛洪的操作

  • 如果接收的是广播帧,不需要查询mac地址,直接进行泛洪

  • 组播,也是泛洪

4、转发

  • 查找到了这个目标mac地址和对应的接口,然后从这个接口进行转发即可

5、丢弃

  • 交换机收到了一个帧的话,如果这个出接口和目标接口都是自己的,交换机就会丢弃

3、mac表怎么获得

img

  • 初始情况下,交换机的mac地址表是空的

  • PC发送一个数据帧,然后交换机查询源mac地址学习,找到了这个对应端口

  • 根据目标mac地址是个单播,查询不到,然后就会泛洪操作,然后主机二会回复一个单播帧,然后交换机继续学习,这个源mac地址和对应的端口,这样交换机就学习到了,并且记录到了mac地址表中

  • 然后PC发送数据后,就会实现转发的操作

4、同网段数据通信全过程

img

1、数据封装过程

img

  • 但是以太网帧的结构里面有源mac,和目标mac地址,但是刚开始不知道目标mac地址,所以的话,需要先发送一个arp请求,获取到目标mac地址

2、泛洪数据帧

img

  • 先发送一个arp广播,交换机直接进行泛洪

3、学习mac地址和主机回复

img

  • 主机二就收到了arp请求,回一个arp应答,里面包含了主机2的mac地址,和主机1的目标mac地址,然后交换机就学习到了这个mac地址和对应的接口

  • 然后主机1就获得了目标的mac地址,然后进行帧的封装,不断的进行数据的转发,然后交换机通过查询mac地址表,然后进行转发即可

4、总结

  • 这个就是同网段通信的过程

img

# 发送一个ping 包,会发送一个arp请求,然后交换机就学习
# 查询交换机
<Huawei>display mac-address
MAC address table of slot 0:
-------------------------------------------------------------------------------
MAC Address    VLAN/       PEVLAN CEVLAN Port            Type      LSP/LSR-ID  
               VSI/SI                                              MAC-Tunnel  
-------------------------------------------------------------------------------
5489-9850-0d09 1           -      -      GE0/0/1         dynamic   0/-         
5489-9880-0d83 1           -      -      GE0/0/2         dynamic   0/-         
-------------------------------------------------------------------------------
Total matching items on slot 0 displayed = 2 


# 主机上面也会有mac地址记录
PC>arp -a 

Internet Address    Physical Address    Type
1.1.1.2             54-89-98-80-0D-83   dynamic


  • 交换机的接口,每个接口的目标mac地址都是相同的,接口不是用来通信的,用来交换机之间的通信

  • arp是一个广播的报文,发送到交换机上面,会泛洪,所有主机都会接收

  • 刚开始都是初始的状态,然后PC1发送一个数据到PC2上面,因为只知道PC2的目标ip,不知道目的mac地址,因此的话,先发送一个arp请求,然后发送过去,交换机就学习PC1的mac地址,并且记录端口信息,PC2收到后,发送一个ARP回答,里面记录的2个mac地址和Ip,然后交换机学习PC2的mac地址,记录端口的关系,这样的话,交换机就学习到了

  • 下次发数据的时候,直接进行转发

  • mac地址表,有个老化时间,默认是300秒,因此的话,每次发送的数据,交换机都要学习mac地址

  • mac地址表为什么会老化

    • mac地址使用的内存空间,如果错误表项,空闲的表项,不老化,导致mac表会占用空间

    • 交换机的mac表有一定的容量限制,不清空无效的表项,导致了MAC地址表容量满了,无法学习最新的MAC地址信息

5、不同网段数据通信过程

img

# pc1和pc2是同一个网段的,与pc3是不同的网段


  • 不同网段的话,就需要去寻找网关,所以的话,就会寻找网关的mac地址,然后网关就会回一个自己的mac地址,需要路由器,网关配置在了路由器,

  • 就是网关路由器从交换机接收到后数据后,进行解封装然后查询到里面的目标ip地址不是自己的然后继续封装,转发

  • 知道转发到了PC3主机上面即可,然后有mac地址,进行arp回答即可

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/937133.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

噪杂环境(房车改装市场)离线语音通断器模块

一直在坚持&#xff0c;却很难有机会上热门&#xff0c;在现在这个以流量为导向的时代&#xff0c;貌似很难靠所谓的坚守和热爱把产品成功的推向市场了。目前的客户仍然是以老客户为主&#xff0c;应用场景主要是房车改装&#xff0c;根据九客户的需求定制化一些模块。因为没有…

Android实现RecyclerView边缘渐变效果

Android实现RecyclerView边缘渐变效果 1.前言&#xff1a; 是指在RecyclerView中实现淡入淡出效果的边缘效果。通过这种效果&#xff0c;可以使RecyclerView的边缘在滚动时逐渐淡出或淡入&#xff0c;以提升用户体验。 2.Recyclerview属性&#xff1a; 2.1、requiresFading…

操作系统(10)存储器的层次结构

前言 操作系统存储器的层次结构是一个复杂而有序的系统&#xff0c;它旨在提供不同速度、容量和成本的存储设备&#xff0c;以满足计算机系统中各种数据存取需求。 一、层次结构概述 操作系统存储器的层次结构通常包括多个层次&#xff0c;从高速到低速、从高成本到低成本排列。…

数据库中的代数运算

这些代数基本运算通常被封装在数据库查询语言中&#xff0c;如SQL中的SELECT、FROM、WHERE等子句&#xff0c;使得用户可以更方便地对数据库进行查询和处理。 下面的介绍基于以下两个关系来说明&#xff1a; 传统的集合运算 并&#xff08;∪&#xff09; 合并两个关系中的元组…

9_less教程 --[CSS预处理]

LESS&#xff08;Leaner Style Sheets&#xff09;是一种CSS预处理器&#xff0c;它扩展了CSS语言&#xff0c;增加了变量、嵌套规则、混合&#xff08;mixins&#xff09;、函数等功能&#xff0c;使得样式表的编写更加灵活和易于维护。下面是一些LESS的基础教程内容&#xff…

Vulhub:Fastjson[漏洞复现]

1.2.24-rce(CVE-2017-18349-Fastjson反序列化) 对于 Fastjson 来说&#xff0c;该漏洞的主要问题在于其1.2.24版本中autotype特性允许任意类的反序列化&#xff0c;因此攻击者通过type指定自定义类并实例化&#xff0c;在特定条件下调用这些类的公共方法。如果一个不受信任的 J…

【AI日记】24.12.13 kaggle 比赛 2-3 大扫除、断舍离、自己做饭

【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】【AI日记】 工作 参加&#xff1a;kaggle 比赛 Regression with an Insurance Dataset参考&#xff1a;kaggle 回归类入门比赛 House Prices - Advanced Regression Techniques内容&#xff1a;构建自己的EDA&#xff08…

MIF格式详解,javascript加载导出 MIF文件示例

MIF 格式详解 MIF&#xff08;MapInfo Interchange Format&#xff09;是由Pitney Bowes Software开发的一种文本格式&#xff0c;用于存储地理空间数据。它通常与地图可视化和地理信息系统&#xff08;GIS&#xff09;相关联。MIF文件通常成对出现&#xff0c;一个.mif文件用…

vlan和vlanif

文章目录 1、为什么会有vlan的存在2、vlan(虚拟局域网)1、vlan原理1. 为什么这样划分了2、如何实现不同交换机相同的vlan实现互访呢3、最优化的解决方法&#xff0c;vlan不同交换机4、vlan标签和vlan数据帧 5、vlan实现2、基于vlan的划分方式1、基于接口的vlan划分方式2、基于m…

PyTorch基本使用-自动微分模块

学习目的&#xff1a;掌握自动微分模块的使用 训练神经网络时&#xff0c;最常用的算法就是反向传播。在该算法中&#xff0c;参数&#xff08;模型权重&#xff09;会根据损失函数关于对应参数的梯度进行调整。为了计算这些梯度&#xff0c;PyTorch 内置了名为 torch.autogra…

Oracle最佳实践-优化硬解析

前段时间参加oracle CAB&#xff0c;oracle高级服务部门做了一个数据库最佳实践的报告&#xff0c;其中就有一项就是解决未使用绑定变量但执行次数很多的SQL&#xff1b; 对于一个数据库来说如果不知道该如何优化&#xff0c;那么最简单最有效的优化就是减少硬解析&#xff0c;…

源码编译jdk11 超详细教程 openjdk11

关于源代码 当前的openJDK的源代码已经被发布到了github上了&#xff0c;所以我们可以直接从github上下载到。 OpenJDK11u源码托管地址&#xff1a;https://github.com/openjdk/jdk11u 带后缀U的地址&#xff0c;或者发行的jdk包&#xff0c;表示当前版本下的持续跟新版。而…

STL-vector类

目录 vector介绍及其使用 介绍 使用 vector定义 vector iterator vector内存管理 vector内容管理 vector的模拟实现 vector的迭代器失效 会引起迭代器失效的操作 vector介绍及其使用 介绍 向量是序列容器&#xff0c;表示大小可以变化的数组 见 chttps://cpluspl…

http1.1 vs http2.0 速度对比实测

首先对比一下http1.1 vs http2.0 区别&#xff1a; 1. 连接管理&#xff1a; HTTP/1.1: 每个请求/响应都需要一个独立的 TCP 连接&#xff0c;虽然可以使用持久连接&#xff08;keep-alive&#xff09;来复用连接&#xff0c;但仍然存在请求队头阻塞&#xff08;Head-of-Line…

JAVA学习日记(二十六)网络编程

一、网络编程的概念 常见的软件架构&#xff1a; 二、网络编程三要素 IP&#xff1a;设备在网络中的地址&#xff0c;是唯一的标识 端口号&#xff1a;应用程序在设备中的唯一标识 协议&#xff1a;数据在网络中传输的规则&#xff0c;常见的协议有UDP、TCP、http、https、f…

域名信息(小迪网络安全笔记~

附&#xff1a;完整笔记目录~ ps&#xff1a;本人小白&#xff0c;笔记均在个人理解基础上整理&#xff0c;若有错误欢迎指正&#xff01; 2.1 域名信息 引子&#xff1a;上一章介绍了服务器的信息收集。本篇则介绍在面对存在Web资产企业时&#xff0c;其域名信息该如何收集。…

ubuntu18.04配置实时内核

ubuntu系统&#xff1a;18.04 当前内核&#xff1a;5.4.0-84-generic 待安装实时内核&#xff1a; 5.6.19-rt11 1、查看当前版本 uname -r 2、下载内核与补丁 一种方式从官网自己下载 官方内核下载地址官方补丁下载地址阿里镜像内核下载地址&#xff08;速度快&#xff0…

Lumos学习王佩丰Excel第二十一讲:经典Excel动态图表实现原理

一、动态图表实现原理 1、理解图表中的数据系列 在Excel图表中&#xff0c;系列指的是图表中的数据集合&#xff0c;它通常代表着一个数据源。每个系列都可以包含多个数据点&#xff0c;这些数据点在图表中以特定的形式展现&#xff0c;如柱状图中的柱子&#xff0c;折线图中…

医学分割数据集B超图像肾脏分割数据集labelme格式715张1类别

数据集格式&#xff1a;labelme格式(不包含mask文件&#xff0c;仅仅包含jpg图片和对应的json文件) 图片数量(jpg文件个数)&#xff1a;715 标注数量(json文件个数)&#xff1a;715 标注类别数&#xff1a;1 标注类别名称:["kidney"] 每个类别标注的框数&#x…

福湘板材:树立行业一线品牌典范

在当今的建筑装修市场中&#xff0c;板材作为一种重要的建筑材料&#xff0c;其品质和性能直接关系到工程质量和使用寿命。福湘板材&#xff0c;作为一个在行业内具有广泛影响力的品牌&#xff0c;一直以来都以高品质、环保性能和卓越的服务赢得了广大消费者的认可&#xff0c;…