基于Q-Learning的机器人栅格地图路径规划,可以更改地图大小及起始点,可以自定义障碍物,MATLAB代码

基于Q-learning算法的栅格地图路径规划是一种利用强化学习技术来解决路径规划问题的方法。

  1. 状态空间定义:在路径规划任务中,状态通常代表机器人或智能体在环境中的位置。状态空间可以是离散的,如网格地图上的特定位置。

  2. 动作空间定义:动作是智能体在每个状态下可以执行的操作。在网格地图中,通常有8个可行动的方向,包括上、下、左、右以及四个对角线方向。

  3. 奖励设计:奖励通常与到达目标或避免碰撞等目标相关。例如,到达障碍物的奖励可以设置为-1,到达终点的奖励为1。

  4. 训练过程:智能体在环境中执行动作并根据奖励信号更新Q值函数。通过迭代训练,智能体学习在不同状态下选择最优的动作,以找到最佳路径。

  5. Q值更新:Q值的更新公式为 Q(s, a) = Q(s, a) + α[r + γ max Q(s’, a’) - Q(s, a)],其中α为学习率,γ为折扣因子,r为奖励,s’为新的状态,a’为新的状态下的最优动作。

  6. 算法优点:Q-learning算法无需预先了解环境模型,能够处理未知环境或动态环境,并且具有自适应性,能够根据环境变化调整策略。

  7. 算法缺点:Q-learning算法的缺点包括可能会陷入局部最优解,导致收敛速度慢。为了提高效率和性能,可以采用改进策略,如改进奖励函数、优化探索策略、经验回放和函数逼近。

  8. 算法改进:一些研究提出了改进的Q-learning算法,例如通过集成改进的粒子群优化(IPSO-DV)来加速Q-learning的收敛,或者通过结合差分进化算法(DE)和Q-learning来提高多机器人路径规划的性能。

  9. 仿真实验:通过仿真实验验证了基于QLearning算法的机器人栅格地图路径规划方法的有效性,实验结果表明,该算法能够有效地找到从起始点到目标点的路径,并且随着迭代次数的增加,路径长度逐渐缩短,成功率逐渐提高。

close all
clear
clc
Map=load('data2.txt');
n=size(Map,1);%1 代表障碍物 ; 0 代表通道
%% 起始点
startX=n-1;
startY=1;
goalX=1;
goalY=n-1;

for i=1:n
    for j=1:n
        tempdata=rand(1,8);
        Qtable{i,j}.data=tempdata/sum(tempdata);
    end
end
Apha=0.98;
Gamma=0.55;
result=[startX startY];
maxgen=800;
imagesc(~Map);
hold on
plot(result(:,2),result(:,1),'r-',LineWidth=2)
hold on
plot(startY,startX,'bo',MarkerSize=5,MarkerFaceColor='b')
hold on
plot(goalY,goalX,'go',MarkerSize=5,MarkerFaceColor='g')
text(startY-0.25,startX,'起点','color','k','linewidth',5)
text(goalY-0.2,goalX,'终点','color','k','linewidth',5)
colormap('gray')

figure
plot(curve,'r-',LineWidth=2)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/935283.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

中电金信携手中远海科,共启贸易金融数智新篇章

在数智化转型成为驱动经济社会高质量发展的新引擎背景下,“数智方案”栏目聚焦金融等国计民生重点行业场景,依托中电金信“源启筑基咨询引领应用重构”的产品及服务体系,输出市场洞察和行业解决方案、应用案例,旨在全面推动行业IT…

抗DDOS设备

0x00 定义: 抗DDOS设备顾名思义,就是防御DDoS攻击的设备,通常包含三个部分:检测中心、清洗中心和管理中心 检测中心主要负责对流量进行检测,发现流量异常后上报管理中心,由管理中心下发引流策略至清洗中心&#xff0…

游戏引擎学习第42天

仓库: https://gitee.com/mrxiao_com/2d_game 简介 目前我们正在研究的内容是如何构建一个基本的游戏引擎。我们将深入了解游戏开发的每一个环节,从最基础的技术实现到高级的游戏编程。 角色移动代码 我们主要讨论的是角色的移动代码。我一直希望能够使用一些基…

Node一、fs 模块、path 模块、端口号、 http 模块、

一、Node.js了解 Node.js是一个跨平台JavaScript运行环境,使开发者可以搭建服务器端的JavaScript应用程序。 概念:使用 Node.js 编写后端程序 / 支持前端工程化 ✓ 后端程序:提供接口和数据,网页资源等 ✓ 前端工程化 &#x…

游戏引擎学习第44天

仓库: https://gitee.com/mrxiao_com/2d_game 向量数学的重要性 矢量数学非常重要,因为 它在某种程度上类似于将C和C视为高于汇编语言的语言,从而使得我们能够以略高的层次思考问题,同时保留大部分性能好处和直接访问的类型。这种思维方式就…

【算法day13】二叉树:递归与回溯

题目引用 找树左下角的值路径总和从中序与后序遍历构造二叉树 今天就简简单单三道题吧~ 1. 找到树左下角的值 给定一个二叉树的 根节点 root,请找出该二叉树的 最底层 最左边 节点的值。 假设二叉树中至少有一个节点。 示例 1: 输入: root [2,1,3] 输出: 1 我们…

MindSearch深度解析实践

1. 课程内容 1.1 MindSearch 简介 MindSearch 是一个开源的 AI 搜索引擎框架,具有与 Perplexity.ai Pro 相同的性能。我们可以轻松部署它来构建自己的专属搜索引擎,可以基于闭源的LLM(如GPT、Claude系列),也可以使用…

【数据结构进阶】AVL树深度剖析 + 实现(附源码)

🌟🌟作者主页:ephemerals__ 🌟🌟所属专栏:数据结构 目录 前言 一、AVL树的概念 二、AVL树底层解析及实现 1. 节点的定义 2. 接口声明 3. AVL树的插入 3.1 更新平衡因子 3.2 旋转(重点…

黑马商城微服务复习(6)

MQ高级 1. 消息可靠性2. 发送者的可靠性1. 发送者问题2. 生产者重试机制3. 生产者确认机制4. MQ可靠性5. 消费者的可靠性 3. 延迟消息1. 定义2. 死信交换机 1. 消息可靠性 发送消息时丢失: 生产者发送消息时连接MQ失败生产者发送消息到达MQ后未找到Exchange生产者发…

深度优先搜索(DFS)与回溯法:从全排列到子集问题的决策树与剪枝优化

文章目录 前言🎄一、全排列✨核心思路✨实现步骤✨代码✨时间和空间复杂度🎁1. 时间复杂度🎁2. 空间复杂度 🎄二、子集✨解法一:逐位置决策法🎁步骤分析🎁运行示例🎁代码 ✨解法二&a…

STM32--中断

中断 中断向量表 定义一段固定的内存,以4字节对齐,存放各个中断服务函数程序的首地址。定义在启动文件中。 中断相关寄存器 内核中断不经过中断使能、除能寄存器。 中断优先级 1、抢占优先级:高高抢占优先级可以打断正在执行的低抢占优先…

AUTOSAR 汽车开放系统架构

AUTOSAR 官网 AUTOMOTIVE OPEN SYSTEM ARCHITECTURE AUTOSAR (AUTomotive Open System ARchitecture) is a global partnership of leading companies in the automotive and software industry to develop and establish the standardized software framework and open E/E …

《计算机视觉:瓶颈之辩与未来之路》

一、计算机视觉的崛起 计算机视觉是使用计算机模仿人类视觉系统的科学,让计算机拥有类似人类提取、处理、理解和分析图像以及图像序列的能力。它是一个多学科交叉的领域,与机器视觉、图像处理、人工智能、机器学习等领域密切相关。 计算机视觉行业可分为…

Vue 集成地图

电子地图应用广泛: 网约车 : 在网约车 场景中实现 准定位 、导航 、司乘同显 ,精准计费 智慧物流、生活服务等,本专题课程囊括各类应用场景 学习 电子地图解决方案,满足学员工作学习各类需求。 基础知识 学习 集成 地图之前需…

Docker Compose实战三:轻松部署PHP

通过前面的文章(Docker Compose基础语法与MySQL部署),你已经掌握了Docker Compose的基本语法和常用指令,并成功部署了一个MySQL数据库服务器。今天,我们将继续深入探索Docker Compose的强大功能,介绍如何使…

【深度学习】深刻理解“变形金刚”——Transformer

Transformer 是一种用于处理序列数据的深度学习模型架构,最初由 Vaswani 等人在 2017 年的论文《Attention is All You Need》中提出。它彻底改变了自然语言处理(NLP)领域,成为许多高级任务(如机器翻译、文本生成、问答…

基于springboot+大数据的校园数字图书馆系统

博主介绍:java高级开发,从事互联网行业六年,熟悉各种主流语言,精通java、python、php、爬虫、web开发,已经做了多年的设计程序开发,开发过上千套设计程序,没有什么华丽的语言,只有实…

Redis篇-9--数据结构篇1--五种基本结构(String,List,Set,Sorted Set,Hash,BLPOP阻塞逻辑)

Redis 是一个高性能的键值存储系统,支持多种数据结构。每种数据结构都有其独特的特点和适用场景。 1、String(字符串) (1)、特点 最简单的数据类型:字符串是最基本的数据类型,可以存储字符串…

优雅的@ObservedV2和@Trace装饰器

Hello,大家好,我是 V 哥。在HarmonyOS NEXT开发中,ObservedV2装饰器和Trace装饰器是用于状态管理的两个装饰器,它们在HarmonyOS应用开发中用于增强对类对象中属性的观测能力。如果你学过观察者模式的原理,你会更容易理…

物联网安全-ARMv8-M Trustzone 实操

前言 本文针对ARMv8m架构M23/M33 MCU安全特性使用进行介绍,以nxp LPC55xx系列和STM32L5xx系列为例,为大家阐述如何使用Trustzone技术提高物联网设备安全性,适合有一定平台安全基础的物联网设备开发人员、安全方案开发人员。 背景 为了提升平台安全性,ARM推出了ARMv8m架构…