全面解析 Transformer:改变深度学习格局的神经网络架构

目录

一、什么是 Transformer?

二、Transformer 的结构解析

  1. 编码器(Encoder)

  2. 解码器(Decoder)

  3. Transformer 模型结构图

三、核心技术:注意力机制与多头注意力

  1. 注意力机制

  2. 多头注意力(Multi-Head Attention)

四、位置编码(Positional Encoding)

五、Transformer 的优势

六、Transformer 的应用

  1. 自然语言处理(NLP)

  2. 计算机视觉(CV)

  3. 多模态学习

七、PyTorch 实现 Transformer 的简单示例

八、总结


        Transformer 是近年来深度学习领域最具影响力的模型架构之一。自从 2017 年 Vaswani 等人提出 "Attention is All You Need" 论文以来,Transformer 已成为自然语言处理(NLP)、计算机视觉(CV)等领域的核心技术。本文将全面解析 Transformer 的基本原理、结构、关键技术及其应用。


一、什么是 Transformer?

        Transformer 是一种基于"注意力机制(Attention Mechanism)"的神经网络架构,主要用于处理序列数据。与传统的循环神经网络(RNN)不同,Transformer 通过并行计算和全局注意力机制,极大提升了模型的效率和性能。


二、Transformer 的结构解析

        Transformer 的架构包括两个主要部分:编码器(Encoder)解码器(Decoder)。一个完整的 Transformer 包括堆叠的多个编码器和解码器。

  1. 编码器(Encoder)

        编码器的主要任务是对输入序列进行编码,生成上下文相关的隐藏表示。每个编码器模块包括以下部分:

  • 多头注意力机制(Multi-Head Attention)
    计算序列中每个位置与其他位置之间的依赖关系。

  • 前馈神经网络(Feed-Forward Network, FFN)
    对每个位置的隐藏表示进行非线性变换。

  • 残差连接(Residual Connection)和层归一化(Layer Normalization)
    稳定训练并加速收敛。

  2. 解码器(Decoder)

        解码器的任务是根据编码器生成的隐藏表示和解码器的先前输出,生成目标序列。每个解码器模块的结构与编码器类似,但增加了一个"掩码多头注意力(Masked Multi-Head Attention)"层,用于保证自回归生成的顺序性。

  3. Transformer 模型结构图

        以下是 Transformer 的整体结构:

输入序列 → [编码器 × N] → 隐藏表示 → [解码器 × N] → 输出序列

三、核心技术:注意力机制与多头注意力

  1. 注意力机制

        注意力机制的核心思想是:为输入序列中的每个元素分配一个与其他元素相关的权重,以捕获其全局依赖关系。

        公式为:

\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V

其中:

  • Q: 查询向量(Query)
  • K: 键向量(Key)
  • V: 值向量(Value)
  • d_k​: 键向量的维度,用于缩放。
  2. 多头注意力(Multi-Head Attention)

        多头注意力是注意力机制的并行化扩展。通过多个头的并行计算,模型可以从不同的子空间中学习特征。

        其公式为:

\text{MultiHead}(Q, K, V) = \text{Concat}(\text{head}_1, \dots, \text{head}_h)W_O\text{head}_i = \text{Attention}(QW_{Q_i}, KW_{K_i}, VW_{V_i})

多头注意力显著增强了模型的表达能力。


四、位置编码(Positional Encoding)

        由于 Transformer 并没有像 RNN 那样的顺序处理能力,它通过加入"位置编码(Positional Encoding)"来注入序列的位置信息。

        位置编码的公式为:

PE_{(pos, 2i)} = \sin\left(\frac{pos}{10000^{2i/d_{\text{model}}}}\right)

PE_{(pos, 2i+1)} = \cos\left(\frac{pos}{10000^{2i/d_{\text{model}}}}\right)

这使得模型能够区分序列中的不同位置。


五、Transformer 的优势

  1. 高效并行化
    Transformer 不需要像 RNN 那样逐步处理序列,因此可以并行计算,大幅缩短训练时间。

  2. 全局信息捕获
    注意力机制允许模型直接捕获序列中任意位置的依赖关系,而不受序列长度的限制。

  3. 扩展性强
    Transformer 的模块化设计使其易于扩展和调整,适配各种任务。


六、Transformer 的应用

  1. 自然语言处理(NLP)

        Transformer 在 NLP 领域的成功举世瞩目,其变体(如 BERT、GPT)已成为业界标准。

  • 机器翻译:Google 翻译采用 Transformer 改善翻译质量。
  • 文本生成:如 ChatGPT、GPT-4 等模型。
  • 情感分析文本分类 等任务。
  2. 计算机视觉(CV)

        Vision Transformer (ViT) 将图像分割为固定大小的 patch,并将每个 patch 视为序列中的一个元素。

  • 图像分类
  • 对象检测
  • 图像分割
  3. 多模态学习

        Transformer 可以用于结合图像、文本和音频等多种模态的数据,如 CLIP 模型。


七、PyTorch 实现 Transformer 的简单示例

        以下是一个使用 PyTorch 实现基础 Transformer 的示例代码:

import torch
import torch.nn as nn
import math

class Transformer(nn.Module):
    def __init__(self, input_dim, model_dim, num_heads, num_layers):
        super(Transformer, self).__init__()
        self.embedding = nn.Embedding(input_dim, model_dim)
        self.positional_encoding = self.create_positional_encoding(model_dim, 5000)
        self.encoder_layer = nn.TransformerEncoderLayer(d_model=model_dim, nhead=num_heads)
        self.encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=num_layers)
        self.fc_out = nn.Linear(model_dim, input_dim)

    def create_positional_encoding(self, d_model, max_len):
        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2) * -(math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        return pe.unsqueeze(0)

    def forward(self, x):
        x = self.embedding(x) + self.positional_encoding[:, :x.size(1), :]
        x = self.encoder(x)
        return self.fc_out(x)

# 示例:初始化模型
model = Transformer(input_dim=1000, model_dim=512, num_heads=8, num_layers=6)
print(model)

八、总结

        Transformer 的设计理念基于简单但高效的注意力机制,其并行化特性和强大的表征能力使其成为现代深度学习的核心模型。从 NLP 到 CV,再到多模态任务,Transformer 正在推动 AI 的新一轮变革。

        如果你想深入理解 Transformer,建议从理论推导入手,结合实践代码进一步探索其潜力!希望这篇文章对你有所帮助!欢迎留言讨论~ 🚀

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/929065.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

LobeChat-46.6k星!顶级AI工具集,一键部署,界面美观易用,ApiSmart 是你肉身体验学习LLM 最好IDEA 工具

LobeChat LobeChat的开源,把AI功能集合到一起,真的太爽了。 我第一次发现LobeChat的时候,就是看到那炫酷的页面,这么强的前端真的是在秀肌肉啊! 看下它的官网,整个网站的动效简直闪瞎我! GitH…

AC+AP漫游实验

实验拓扑 实验要求 1.AP1服务vlan10,AP2服务vlan20,实现三层漫游 2.AP1与AP2为不同AP组,直接转发 实验步骤 1.配置VLAN放行相关流量 交换机与AP接口为trunk口并修改PVID为30 2.配置相关业务使得ap上线 3.配置vap上线,AP可用…

浅谈CI持续集成

1.什么是持续集成 持续集成(Continuous Integration)(CI)是一种软件开发实践,团队成员频繁地将他们的工作成果集成到一起(通常每人每天至少提交一次,这样每天就会有多次集成),并且在每次提交后…

JUnit介绍:单元测试

1、什么是单元测试 单元测试是针对最小的功能单元编写测试代码(Java 程序最小的功能单元是方法)单元测试就是针对单个Java方法的测试。 2、为什么要使用单元测试 确保单个方法运行正常; 如果修改了代码,只需要确保其对应的单元…

Active RIS-Aided ISAC Systems: Beamforming Design and Performance Analysis

文章目录 II. SYSTEM MODELC. Active RIS Model III. PROBLEM FORMULATIONA. Radar Performance MetricC. Optimize Φ V. PERFORMANCE ANALYSIS OF THE RADAR SINR IN ACTIVE RIS-AIDED SENSING SYSTEMSA. Simplified System SettingB. Power Scaling Law AnalysisC. Active R…

python之Django连接数据库

文章目录 连接Mysql数据库安装Mysql驱动配置数据库信息明确连接驱动定义模型在模型下的models.py中定义表对象在settings.py 中找到INSTALLED_APPS添加创建的模型 测试testdb.py中写增删改查操作urls.py添加请求路径启动项目进行测试 连接Mysql数据库 安装Mysql驱动 pip inst…

网页端五子棋对战(四)---玩家匹配实现上线下线处理

文章目录 1.游戏大厅用户匹配1.1请求和响应1.2设计匹配页面1.3获取玩家信息1.4玩家信息的样式设置1.5初始化我们的websocket1.6点击按钮和客户端交互1.7点击按钮和服务器端交互 2.服务器端实现匹配功能框架2.1方法重写2.2借用session 3.处理上线下线3.1什么是上线下线3.2实现用…

matlab finv()函数解释 F分布 和 逆累积分布函数 卡方分布

1.Earths flattening 翻译并解释含义 "Earths flattening" 翻译为中文是“地球的扁率”。 含义解释: 地球的扁率是指地球形状偏离完美球形的程度。地球并非一个完美的球体,而是一个扁球体,即在两极略微扁平,赤道略微…

qt QSettings详解

1、概述 QSettings是Qt框架中用于应用程序配置和持久化数据的一个类。它提供了一种便捷的方式来存储和读取应用程序的设置,如窗口大小、位置、用户偏好等。QSettings支持多种存储格式,包括INI文件、Windows注册表(仅限Windows平台&#xff0…

Web 毕设篇-适合小白、初级入门练手的 Spring Boot Web 毕业设计项目:智行无忧停车场管理系统(前后端源码 + 数据库 sql 脚本)

🔥博客主页: 【小扳_-CSDN博客】 ❤感谢大家点赞👍收藏⭐评论✍ 文章目录 1.0 项目介绍 1.1 项目功能 2.0 用户登录功能 3.0 首页界面 4.0 车辆信息管理功能 5.0 停车位管理功能 6.0 入场登记管理功能 7.0 预约管理功能 8.0 收费规则功能 9.0…

openssl使用哈希算法生成随机密钥

文章目录 一、openssl中随机数函数**OpenSSL 随机数函数概览**1. **核心随机数函数** **常用函数详解**1. RAND_bytes2. RAND_priv_bytes3. RAND_seed 和 RAND_add4. RAND_status **随机数生成器的熵池****常见用例****注意事项** 二、使用哈希算法生成随机的密钥 一、openssl中…

【PlantUML系列】序列图(二)

目录 一、参与者 二、消息交互顺序 三、其他技巧 3.1 改变参与者的顺序 3.2 使用 as 重命名参与者 3.3 注释 3.4 页眉和页脚 一、参与者 使用 participant、actor、boundary、control、entity 和 database 等关键字来定义不同类型的参与者。例如: Actor&…

从excel数据导入到sqlsever遇到的问题

1、格式问题时间格式,excel中将日期列改为日期未生效,改完后,必须手动单击这个单元格才能生效,那不可能一个一个去双击。解决方案如下 2、导入之后表字段格式问题,数据类型的用navicat导入之后默认是nvarchar类型的&a…

On-Chip-Network之router微架构的物理实现

Low-Power Microarchitecture 自20世纪90年代以来,功耗一直是嵌入式芯片和高性能芯片面临的一个挑战。自2000年代中期以来,它已经成为大多数设计的主要约束。多核解决了功耗问题,由此产生的communication substrate,namely the on…

路径规划之启发式算法之四:蚁群算法(Ant Colony Optimization,ACO)

蚁群算法(Ant Colony Optimization,ACO)是一种模拟蚂蚁觅食行为的启发式搜索算法,由Marco Dorigo于1992年在他的博士论文中提出。该算法适用于解决组合优化问题,如旅行商问题(TSP)、车辆路径问题…

LabVIEW密码保护与反编译的安全性分析

在LabVIEW中,密码保护是一种常见的源代码保护手段,但其安全性并不高,尤其是在面对专业反编译工具时。理论上,所有软件的反编译都是可能的,尽管反编译不一定恢复完全的源代码,但足以提取程序的核心功能和算法…

RabbitMQ消息可靠性保证机制6--可靠性分析

在使用消息中间件的过程中,难免会出现消息错误或者消息丢失等异常情况。这个时候就需要有一个良好的机制来跟踪记录消息的过程(轨迹溯源),帮助我们排查问题。 在RabbitMQ中可以使用Firehose实现消息的跟踪,Firehose可…

工业—使用Flink处理Kafka中的数据_ProduceRecord1

1 、 使用 Flink 消费 Kafka 中 ProduceRecord 主题的数据,统计在已经检验的产品中,各设备每 5 分钟 生产产品总数,将结果存入Redis 中, key 值为

前端上传后端接收参数为null

记录一下工作中的问题 前端明明把文件传到后台了,但是后台接收参数为null 原因: 前端上传文件的name和后端接收参数名称不匹配 前端 后端 把前端上传的name由upfile改为file即可 本来是很基本的小问题,但因为自己钻了牛角尖一直没搞定&…

CSS3 布局样式及其应用

深入探讨 CSS3 布局样式及其应用 引言 在现代网页设计中,CSS(层叠样式表)不仅是设计视觉样式的工具,也是布局的核心技术。CSS3引入了新的布局模型,其中Flexbox与Grid布局在满足复杂布局需求方面表现尤为出色。本文将…