实时数仓Kappa架构:从入门到实战

引言

随着大数据技术的不断发展,企业对实时数据处理和分析的需求日益增长。实时数仓(Real-Time Data Warehouse, RTDW)应运而生,其中Kappa架构作为一种简化的数据处理架构,通过统一的流处理框架,解决了传统Lambda架构中批处理和实时处理的复杂性。本文将深入探讨Kappa架构的历史背景、业务场景、功能点、优缺点、解决的问题以及底层原理,并详细介绍如何使用Java语言快速搭建一套实时数仓。

一、Kappa架构的历史背景

1.1 Lambda架构的局限性

Lambda架构由Nathan Marz提出,旨在通过批处理层和速度层的结合,同时满足实时数据分析和历史数据分析的需求。然而,Lambda架构存在以下局限性:

  • 系统复杂性高:需要维护两套系统(批处理层和速度层),增加了开发和维护的难度。
  • 数据一致性延迟:由于批处理层和速度层的数据处理存在时间差,可能导致数据一致性问题。

1.2 Kappa架构的提出

Kappa架构由LinkedIn的前首席工程师杰伊·克雷普斯(Jay Kreps)提出,作为Lambda架构的改进方案。Kappa架构通过删除批处理层,仅保留流处理层,实现了实时和批量数据的统一处理,从而简化了系统架构。

二、Kappa架构的业务场景

Kappa架构广泛应用于需要实时处理和分析数据的场景,包括但不限于:

  • 金融服务:实时交易监控、欺诈检测和风险管理。
  • 电子商务:实时推荐系统、库存管理和客户行为分析。
  • 物联网(IoT):设备监控、预测性维护和实时数据流分析。
  • 社交媒体:实时内容分析、趋势分析和用户互动监控。
  • 电信:实时网络监控、流量分析和故障检测。

三、Kappa架构的功能点

3.1 数据流处理

Kappa架构所有数据都是以事件流的形式处理的,没有批处理的概念。数据流是连续的、实时的,不需要区分历史数据和实时数据。

3.2 简化架构

通过统一的流处理框架,Kappa架构简化了数据处理流程,避免了Lambda架构中批处理层和速度层的分离,降低了系统复杂性和维护成本。

3.3 流处理框架

Kappa架构使用流处理引擎(如Apache Kafka、Apache Flink、Apache Storm)来处理数据流。数据在流处理引擎中进行过滤、转换、聚合等处理操作,实时生成结果。

3.4 数据存储与查询

处理后的数据存储在低延迟、高吞吐量的存储系统中(如Apache Kafka、Cassandra、HBase、Elasticsearch等),支持快速写入和查询,以满足实时数据分析的需求。

四、Kappa架构的优缺点

4.1 优点

  • 简化架构:通过统一的流处理引擎,简化了数据处理流程,降低了系统复杂性和维护成本。
  • 实时处理:所有数据都以事件流的形式实时处理,提供实时的数据分析和决策支持。
  • 一致性:由于没有批处理和实时处理的分离,数据的一致性和完整性更容易保证。
  • 灵活性:支持各种实时数据源和数据类型,具有较高的灵活性和可扩展性。

4.2 缺点

  • 流处理复杂性:设计和实现高效的流处理逻辑需要专业的技术和经验,处理复杂的业务逻辑和数据操作。
  • 故障恢复:实时数据处理对系统的稳定性和容错性要求高,需要有效的故障恢复机制。
  • 数据存储和查询:实时数据存储系统需要支持高吞吐量和低延迟的写入和查询,确保实时分析的性能。
  • 成本:实时处理和存储系统的成本较高,需要投入更多的资源和技术支持。

五、Kappa架构解决的问题

Kappa架构通过统一的流处理框架,解决了传统Lambda架构中批处理和实时处理的复杂性,实现了实时和批量数据的统一处理。这解决了以下问题:

  • 数据一致性延迟:通过流处理框架,实时处理和批量处理的数据保持一致,避免了数据一致性延迟问题。
  • 系统复杂性:简化了系统架构,降低了开发和维护的难度。
  • 资源利用率:提高了资源利用率,避免了批处理层和速度层的资源重复投入。

六、Kappa架构的底层原理

6.1 数据流

在Kappa架构中,数据流是连续的、实时的,从各种数据源(如传感器、日志、交易系统等)产生,并通过消息队列(如Apache Kafka)传输到流处理引擎。

6.2 流处理引擎

流处理引擎(如Apache Flink)接收数据流,执行过滤、转换、聚合等操作,并实时生成处理结果。流处理引擎能够处理复杂的计算逻辑,支持窗口函数、状态管理等高级功能。

6.3 数据存储

处理后的数据存储在高性能的存储系统中(如Apache Kafka、Cassandra等),这些存储系统支持快速写入和查询,以满足实时数据分析的需求。同时,存储系统还可以保留数据的完整历史记录,以便进行历史数据分析和重放。

6.4 查询与分析

用户可以通过查询引擎和BI工具实时访问和分析存储的数据。数据可视化工具提供实时的数据展示和报告生成,帮助用户快速获取数据洞察并做出决策。

七、使用Java快速搭建实时数仓示例

7.1 环境准备

首先,确保你已经安装了以下软件和工具:

  • Java Development Kit (JDK):用于Java程序的开发和编译。
  • Apache Kafka:用于消息队列和数据流传输。
  • Apache Flink:用于流处理。
  • MySQL:用于模拟数据源。
  • Maven:用于项目管理和依赖管理。

7.2 项目结构

创建一个Maven项目,项目结构如下:

复制代码
realtime-dw
├── pom.xml
├── src
│   ├── main
│   │   ├── java
│   │   │   └── com
│   │   │       └── example
│   │   │           ├── KafkaProducer.java
│   │   │           ├── FlinkJob.java
│   │   │           └── Main.java
│   │   └── resources
│   │       └── application.properties

7.3 添加依赖

pom.xml文件中添加必要的依赖:

xml复制代码
<dependencies>
<!-- Kafka Client -->
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-clients</artifactId>
<version>2.8.0</version>
</dependency>
<!-- Flink Dependencies -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-java</artifactId>
<version>1.13.2</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java_2.11</artifactId>
<version>1.13.2</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-kafka_2.11</artifactId>
<version>1.13.2</version>
</dependency>
<!-- MySQL JDBC Driver -->
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>8.0.23</version>
</dependency>
</dependencies>

7.4 模拟数据源

使用MySQL数据库模拟数据源,创建一个简单的表并插入一些数据:

sql复制代码
CREATE TABLE users (
    id INT PRIMARY KEY,
    name VARCHAR(50),
    age INT,
    created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);
INSERT INTO users (id, name, age) VALUES (1, 'Alice', 30), (2, 'Bob', 25), (3, 'Charlie', 35);

7.5 Kafka生产者

编写一个Kafka生产者,将数据从MySQL数据库读取并发送到Kafka主题:

java复制代码
package com.example;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.Statement;
import java.util.Properties;
public class KafkaProducer {
private static final String KAFKA_TOPIC = "user_topic";
private static final String KAFKA_BOOTSTRAP_SERVERS = "localhost:9092";
public static void main(String[] args) {
Properties props = new Properties();
        props.put("bootstrap.servers", KAFKA_BOOTSTRAP_SERVERS);
        props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        KafkaProducer<String, String> producer = new KafkaProducer<>(props);
try (Connection connection = DriverManager.getConnection("jdbc:mysql://localhost:3306/mydb", "username", "password");
Statement statement = connection.createStatement()) {
ResultSet resultSet = statement.executeQuery("SELECT * FROM users");
while (resultSet.next()) {
String key = resultSet.getString("id");
String value = resultSet.getString("name") + "," + resultSet.getInt("age") + "," + resultSet.getTimestamp("created_at");
                ProducerRecord<String, String> record = new ProducerRecord<>(KAFKA_TOPIC, key, value);
                producer.send(record);
            }
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            producer.close();
        }
    }
}

7.6 Flink作业

编写一个Flink作业,从Kafka主题读取数据并进行实时处理:

java复制代码
package com.example;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
public class FlinkJob {
private static final String KAFKA_TOPIC = "user_topic";
private static final String KAFKA_BOOTSTRAP_SERVERS = "localhost:9092";
private static final String GROUP_ID = "flink-group";
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        FlinkKafkaConsumer<String> consumer = new FlinkKafkaConsumer<>(KAFKA_TOPIC, new SimpleStringSchema(), props);
        consumer.setGroupId(GROUP_ID);
        DataStream<String> stream = env.addSource(consumer);
        DataStream<String> processedStream = stream.map(new MapFunction<String, String>() {
@Override
public String map(String value) throws Exception {
                String[] parts = value.split(",");
return "User ID: " + parts[0] + ", Name: " + parts[1] + ", Age: " + parts[2] + ", Created At: " + parts[3];
            }
        });
        processedStream.print();
        env.execute("Real-Time Data Warehouse with Flink");
    }
private static Properties getKafkaProperties() {
Properties props = new Properties();
        props.setProperty("bootstrap.servers", KAFKA_BOOTSTRAP_SERVERS);
        props.setProperty("group.id", GROUP_ID);
return props;
    }
}

7.7 启动程序

  1. 启动Kafka和Zookeeper。
  2. 启动MySQL数据库,并确保users表中有数据。
  3. 运行KafkaProducer类,将数据发送到Kafka主题。
  4. 运行FlinkJob类,从Kafka主题读取数据并进行实时处理。

7.8 结果展示

在控制台中,你将看到Flink作业实时处理并输出数据:

复制代码
User ID: 1, Name: Alice, Age: 30, Created At: 2023-10-01 12:00:00
User ID: 2, Name: Bob, Age: 25, Created At: 2023-10-01 12:00:01
User ID: 3, Name: Charlie, Age: 35, Created At: 2023-10-01 12:00:02

八、总结

Kappa架构作为一种简化的数据处理架构,通过统一的流处理框架,解决了传统Lambda架构中批处理和实时处理的复杂性,提供了强大的实时数据处理和分析能力。本文详细介绍了Kappa架构的历史背景、业务场景、功能点、优缺点、解决的问题以及底层原理,并给出了使用Java语言快速搭建实时数仓的示例。通过本文的学习,读者可以深入了解Kappa架构的原理和实现方法,并能够在实际项目中应用这一技术。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/922245.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C语言菜鸟入门·关键字·int的用法

目录 1. int关键字 1.1 取值范围 1.2 符号类型 1.3 运算 1.3.1 加法运算() 1.3.2 减法运算(-) 1.3.3 乘法运算(*) 1.3.4 除法运算(/) 1.3.5 取余运算(%) 1.3.6 自增()与自减(--) 1.3.7 位运算 2. 更多关键字 1. int关键字 int 是一个关键字&#xff0…

unity中:超低入门级显卡、集显(功耗30W以下)运行unity URP管线输出的webgl程序有那些地方可以大幅优化帧率

删除Global Volume&#xff1a; 删除Global Volume是一项简单且高效的优化措施。实测表明&#xff0c;这一改动可以显著提升帧率&#xff0c;甚至能够将原本无法流畅运行的场景变得可用。 更改前的效果&#xff1a; 更改后的效果&#xff1a; 优化阴影和材质&#xff1a; …

Vue + Websocket播放PCM(base64转ArrayBuffer、 字符串转ArrayBuffer)

文章目录 引言I 音视频处理相关概念和APIII 案例:基于开源库 pcm-player方式播放借助MediaSource和Audio对象播放音频流。基于原生api AudioContext 播放操作III 格式转换js字符串转ArrayBufferbase64 转 ArrayBufferIV 解决pcm-player分片播放问题引言 需求: 基于webscoket传…

【JavaEE进阶】SpringBoot 快速上⼿

了解Maven,并配置国内源 使⽤SpringBoot创建⼀个项⽬, 输出HelloWorld 一、Maven 1.什么是Maven 官⽅对于Maven的描述: Apache Maven is a software project management and comprehension tool. Based on the concept of a project object model (POM), Maven can man…

QT QFormLayout控件 全面详解

本系列文章全面的介绍了QT中的57种控件的使用方法以及示例&#xff0c;包括 Button(PushButton、toolButton、radioButton、checkBox、commandLinkButton、buttonBox)、Layouts(verticalLayout、horizontalLayout、gridLayout、formLayout)、Spacers(verticalSpacer、horizonta…

PCA算法所体现的核心数学思维

一、PCA算法的基本思想 PCA算法的核心思想是通过线性变换&#xff0c;将数据从原始的高维空间投影到低维空间&#xff0c;同时尽可能保留数据的主要变异性。这种变换是通过找到一组新的坐标轴&#xff08;即主成分&#xff09;来实现的&#xff0c;这些坐标轴是原始数据空间的…

如何解决pdf.js跨域从url动态加载pdf文档

摘要 当我们想用PDF.js从URL加载文档时&#xff0c;将会因遇到跨域问题而中断&#xff0c;且是因为会触发了PDF.js和浏览器的双重CORS block&#xff0c;这篇文章将会介绍&#xff1a;①如何禁用pdf.js的跨域&#xff1f;②如何绕过浏览器的CORS加载URL文件&#xff1f;②如何使…

C语言数据结构——详细讲解 双链表

从单链表到双链表&#xff1a;数据结构的演进与优化 前言一、单链表回顾二、单链表的局限性三、什么是双链表四、双链表的优势1.双向遍历2.不带头双链表的用途3.带头双链表的用途 五、双链表的操作双链表的插入操作&#xff08;一&#xff09;双链表的尾插操作&#xff08;二&a…

Java小白成长记(创作笔记二)

目录 序言 思维导图 续 用户登录/注册 数据表 实体层 持久层 服务层 认证与授权 整合springsecurity controller注册测试 controller登录测试 跨域解决 方法 Java小白成长记&#xff08;创作笔记一&#xff09; Java小白成长记&#xff08;创作笔记二&#xff09;…

案例研究|阿特斯的JumpServer分布式部署和多组织管理实践

苏州阿特斯阳光电力科技有限公司&#xff08;以下简称为阿特斯&#xff09;是一家集太阳能光伏组件制造和为全球客户提供太阳能应用产品研发、设计、制造、销售的专业公司。 阿特斯集团总部位于加拿大&#xff0c;中国区总部位于江苏省苏州市。通过全球战略和多元化的市场布局…

20241123-四元数高阶奇异值分解-(1)

四元数高阶奇异值分解及其在彩色图像处理中的应用-(1) &#x1f4d4; 声明 &#x1f1e8;&#x1f1f3; : 1️⃣ &#x1f4c3; 原文网址链接: 四元数高阶奇异值分解及其在彩色图像处理中的应用 - ScienceDirect &#x1f517; Quaternion … image processing (arxiv.org) ​ …

游戏引擎学习第20天

视频参考:https://www.bilibili.com/video/BV1VkBCYmExt 解释 off-by-one 错误 从演讲者的视角&#xff1a;对代码问题的剖析与修复过程 问题的起因 演讲者提到&#xff0c;他可能无意中在代码中造成了一个错误&#xff0c;这与“调试时间标记索引”有关。他发现了一个逻辑问题…

python开发之Linux

文章目录 1. 基础2. 进阶链接压缩/解压缩 文件权限用户远程操作编辑文件软件安装 1. 基础 # 查看当前目录下文件 ls# 查看当前目录 pwd# 清除界面内容 clear# 切换目录 cd# 创建目录 mkdir# 创建文件 touch 文件 vi 文件# 强制删除 rm -rf # 复制文件 cp 复制文件 复制文件路径…

Docker2:docker快速入门(部署MySQL)

欢迎来到“雪碧聊技术”CSDN博客&#xff01; 在这里&#xff0c;您将踏入一个专注于Java开发技术的知识殿堂。无论您是Java编程的初学者&#xff0c;还是具有一定经验的开发者&#xff0c;相信我的博客都能为您提供宝贵的学习资源和实用技巧。作为您的技术向导&#xff0c;我将…

oracle的静态注册和动态注册

oracle的静态注册和动态注册 静态注册&#xff1a; 静态注册 : 指将实例的相关信息手动告知 listener 侦 听 器 &#xff0c; 可以使用netmgr,netca,oem 以及直接 vi listener.ora 文件来实现静态注册&#xff0c;在动态注册不稳定时使用&#xff0c;特点是&#xff1a;稳定&…

杰发科技AC7840——EEP中RAM的配置

sample和手册中示例代码的sram区地址定义不一样 这个在RAM中使用没有限制&#xff0c;根据这个表格留下足够空间即可 比如需要4096字节的eep空间&#xff0c;可以把RAM的地址改成E000&#xff0c;即E000-EFFF&#xff0c;共4096bytes即可。

洛谷 P1616 疯狂的采药 C语言 记忆化搜索

题目&#xff1a; https://www.luogu.com.cn/problem/P1616?contestId215526 完全背包问题&#xff0c;最后一个超出空间了。完全背包和就是无限次的拿&#xff0c;公式跟01背包差不多。 但是&#xff0c;只有当前能拿和拿不下&#xff0c;换下一个。注意要处理好边界条件。…

分布式 Data Warebase - 构筑 AI 时代数据基石

导读&#xff1a;作者以人类世界一个信息层次模型 DIKW 为出发点&#xff0c;引出对计算机世界&#xff08;系统&#xff09;处理数据过程的介绍。接着以一个民宿平台数据架构随业务发展而不断演进的过程&#xff0c;展示了这场信息革命中&#xff0c;在具体应用场景下&#xf…

zotero7 插件使用

zotero style 1、下载地址 Zotero 插件商店 | Zotero 中文社区 2、配置 在工具插件里 3、配置 style 进入高级→设置编辑器 查找 easy 设置完即可显示&#xff0c; 注1&#xff1a;easyscholar的密钥要自行申请注册&#xff0c;注册地址&#xff1a;easySchol…

使用 Elastic AI Assistant for Search 和 Azure OpenAI 实现从 0 到 60 的转变

作者&#xff1a;来自 Elastic Greg Crist Elasticsearch 推出了一项新功能&#xff1a;Elastic AI Assistant for Search。你可以将其视为 Elasticsearch 和 Kibana 开发人员的内置指南&#xff0c;旨在回答问题、引导你了解功能并让你的生活更轻松。在 Microsoft AI Services…