BERT的中文问答系统39

实现当用户在GUI中输入问题(例如“刘邦”)且输出的答案被标记为不正确时,自动从百度百科中搜索相关内容并显示在GUI中的功能,我们需要对现有的代码进行一些修改。以下是完整的代码,包括对XihuaChatbotGUI类的修改以及新增的功能:

import os
import json
import jsonlines
import torch
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from transformers import BertModel, BertTokenizer
import tkinter as tk
from tkinter import filedialog, messagebox, ttk
import logging
from difflib import SequenceMatcher
from datetime import datetime
import requests
from bs4 import BeautifulSoup

# 获取项目根目录
PROJECT_ROOT = os.path.dirname(os.path.abspath(__file__))

# 配置日志
LOGS_DIR = os.path.join(PROJECT_ROOT, 'logs')
os.makedirs(LOGS_DIR, exist_ok=True)

def setup_logging():
    log_file = os.path.join(LOGS_DIR, datetime.now().strftime('%Y-%m-%d_%H-%M-%S_羲和.txt'))
    logging.basicConfig(
        level=logging.INFO,
        format='%(asctime)s - %(levelname)s - %(message)s',
        handlers=[
            logging.FileHandler(log_file),
            logging.StreamHandler()
        ]
    )

setup_logging()

# 数据集类
class XihuaDataset(Dataset):
    def __init__(self, file_path, tokenizer, max_length=128):
        self.tokenizer = tokenizer
        self.max_length = max_length
        self.data = self.load_data(file_path)

    def load_data(self, file_path):
        data = []
        if file_path.endswith('.jsonl'):
            with jsonlines.open(file_path) as reader:
                for i, item in enumerate(reader):
                    try:
                        data.append(item)
                    except jsonlines.jsonlines.InvalidLineError as e:
                        logging.warning(f"跳过无效行 {i + 1}: {e}")
        elif file_path.endswith('.json'):
            with open(file_path, 'r') as f:
                try:
                    data = json.load(f)
                except json.JSONDecodeError as e:
                    logging.warning(f"跳过无效文件 {file_path}: {e}")
        return data

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        item = self.data[idx]
        question = item['question']
        human_answer = item['human_answers'][0]
        chatgpt_answer = item['chatgpt_answers'][0]

        try:
            inputs = self.tokenizer(question, return_tensors='pt', padding='max_length', truncation=True, max_length=self.max_length)
            human_inputs = self.tokenizer(human_answer, return_tensors='pt', padding='max_length', truncation=True, max_length=self.max_length)
            chatgpt_inputs = self.tokenizer(chatgpt_answer, return_tensors='pt', padding='max_length', truncation=True, max_length=self.max_length)
        except Exception as e:
            logging.warning(f"跳过无效项 {idx}: {e}")
            return self.__getitem__((idx + 1) % len(self.data))

        return {
            'input_ids': inputs['input_ids'].squeeze(),
            'attention_mask': inputs['attention_mask'].squeeze(),
            'human_input_ids': human_inputs['input_ids'].squeeze(),
            'human_attention_mask': human_inputs['attention_mask'].squeeze(),
            'chatgpt_input_ids': chatgpt_inputs['input_ids'].squeeze(),
            'chatgpt_attention_mask': chatgpt_inputs['attention_mask'].squeeze(),
            'human_answer': human_answer,
            'chatgpt_answer': chatgpt_answer
        }

# 获取数据加载器
def get_data_loader(file_path, tokenizer, batch_size=8, max_length=128):
    dataset = XihuaDataset(file_path, tokenizer, max_length)
    return DataLoader(dataset, batch_size=batch_size, shuffle=True)

# 模型定义
class XihuaModel(torch.nn.Module):
    def __init__(self, pretrained_model_name='F:/models/bert-base-chinese'):
        super(XihuaModel, self).__init__()
        self.bert = BertModel.from_pretrained(pretrained_model_name)
        self.classifier = torch.nn.Linear(self.bert.config.hidden_size, 1)

    def forward(self, input_ids, attention_mask):
        outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
        pooled_output = outputs.pooler_output
        logits = self.classifier(pooled_output)
        return logits

# 训练函数
def train(model, data_loader, optimizer, criterion, device, progress_var=None):
    model.train()
    total_loss = 0.0
    num_batches = len(data_loader)
    for batch_idx, batch in enumerate(data_loader):
        try:
            input_ids = batch['input_ids'].to(device)
            attention_mask = batch['attention_mask'].to(device)
            human_input_ids = batch['human_input_ids'].to(device)
            human_attention_mask = batch['human_attention_mask'].to(device)
            chatgpt_input_ids = batch['chatgpt_input_ids'].to(device)
            chatgpt_attention_mask = batch['chatgpt_attention_mask'].to(device)

            optimizer.zero_grad()
            human_logits = model(human_input_ids, human_attention_mask)
            chatgpt_logits = model(chatgpt_input_ids, chatgpt_attention_mask)

            human_labels = torch.ones(human_logits.size(0), 1).to(device)
            chatgpt_labels = torch.zeros(chatgpt_logits.size(0), 1).to(device)

            loss = criterion(human_logits, human_labels) + criterion(chatgpt_logits, chatgpt_labels)
            loss.backward()
            optimizer.step()

            total_loss += loss.item()
            if progress_var:
                progress_var.set((batch_idx + 1) / num_batches * 100)
        except Exception as e:
            logging.warning(f"跳过无效批次: {e}")

    return total_loss / len(data_loader)

# 主训练函数
def main_train(retrain=False):
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    logging.info(f'使用设备: {device}')

    tokenizer = BertTokenizer.from_pretrained('F:/models/bert-base-chinese')
    model = XihuaModel(pretrained_model_name='F:/models/bert-base-chinese').to(device)

    if retrain:
        model_path = os.path.join(PROJECT_ROOT, 'models/xihua_model.pth')
        if os.path.exists(model_path):
            model.load_state_dict(torch.load(model_path, map_location=device))
            logging.info("加载现有模型")
        else:
            logging.info("没有找到现有模型,将使用预训练模型")

    optimizer = optim.Adam(model.parameters(), lr=1e-5)
    criterion = torch.nn.BCEWithLogitsLoss()

    train_data_loader = get_data_loader(os.path.join(PROJECT_ROOT, 'data/train_data.jsonl'), tokenizer, batch_size=8, max_length=128)

    num_epochs = 30
    for epoch in range(num_epochs):
        train_loss = train(model, train_data_loader, optimizer, criterion, device)
        logging.info(f'Epoch [{epoch+1}/{num_epochs}], Loss: {train_loss:.10f}')

    torch.save(model.state_dict(), os.path.join(PROJECT_ROOT, 'models/xihua_model.pth'))
    logging.info("模型训练完成并保存")

# 网络搜索函数
def search_baidu(query):
    url = f"https://www.baidu.com/s?wd={query}"
    headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'
    }
    response = requests.get(url, headers=headers)
    soup = BeautifulSoup(response.text, 'html.parser')
    results = soup.find_all('div', class_='c-abstract')
    if results:
        return results[0].get_text().strip()
    return "没有找到相关信息"

# 百度百科搜索函数
def search_baidu_baike(query):
    url = f"https://baike.baidu.com/item/{query}"
    headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'
    }
    response = requests.get(url, headers=headers)
    soup = BeautifulSoup(response.text, 'html.parser')
    meta_description = soup.find('meta', attrs={'name': 'description'})
    if meta_description:
        return meta_description['content']
    return "没有找到相关信息"

# GUI界面
class XihuaChatbotGUI:
    def __init__(self, root):
        self.root = root
        self.root.title("羲和聊天机器人")

        self.tokenizer = BertTokenizer.from_pretrained('F:/models/bert-base-chinese')
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        self.model = XihuaModel(pretrained_model_name='F:/models/bert-base-chinese').to(self.device)
        self.load_model()
        self.model.eval()

        # 加载训练数据集以便在获取答案时使用
        self.data = self.load_data(os.path.join(PROJECT_ROOT, 'data/train_data.jsonl'))

        # 历史记录
        self.history = []

        self.create_widgets()

    def create_widgets(self):
        # 设置样式
        style = ttk.Style()
        style.theme_use('clam')

        # 顶部框架
        top_frame = ttk.Frame(self.root)
        top_frame.pack(pady=10)

        self.question_label = ttk.Label(top_frame, text="问题:", font=("Arial", 12))
        self.question_label.grid(row=0, column=0, padx=10)

        self.question_entry = ttk.Entry(top_frame, width=50, font=("Arial", 12))
        self.question_entry.grid(row=0, column=1, padx=10)

        self.answer_button = ttk.Button(top_frame, text="获取回答", command=self.get_answer, style='TButton')
        self.answer_button.grid(row=0, column=2, padx=10)

        # 中部框架
        middle_frame = ttk.Frame(self.root)
        middle_frame.pack(pady=10)

        self.chat_text = tk.Text(middle_frame, height=20, width=100, font=("Arial", 12), wrap='word')
        self.chat_text.grid(row=0, column=0, padx=10, pady=10)
        self.chat_text.tag_configure("user", justify='right', foreground='blue')
        self.chat_text.tag_configure("xihua", justify='left', foreground='green')

        # 底部框架
        bottom_frame = ttk.Frame(self.root)
        bottom_frame.pack(pady=10)

        self.correct_button = ttk.Button(bottom_frame, text="准确", command=self.mark_correct, style='TButton')
        self.correct_button.grid(row=0, column=0, padx=10)

        self.incorrect_button = ttk.Button(bottom_frame, text="不准确", command=self.mark_incorrect, style='TButton')
        self.incorrect_button.grid(row=0, column=1, padx=10)

        self.train_button = ttk.Button(bottom_frame, text="训练模型", command=self.train_model, style='TButton')
        self.train_button.grid(row=0, column=2, padx=10)

        self.retrain_button = ttk.Button(bottom_frame, text="重新训练模型", command=lambda: self.train_model(retrain=True), style='TButton')
        self.retrain_button.grid(row=0, column=3, padx=10)

        self.progress_var = tk.DoubleVar()
        self.progress_bar = ttk.Progressbar(bottom_frame, variable=self.progress_var, maximum=100, length=200, mode='determinate')
        self.progress_bar.grid(row=1, column=0, columnspan=4, pady=10)

        self.log_text = tk.Text(bottom_frame, height=10, width=70, font=("Arial", 12))
        self.log_text.grid(row=2, column=0, columnspan=4, pady=10)

        self.evaluate_button = ttk.Button(bottom_frame, text="评估模型", command=self.evaluate_model, style='TButton')
        self.evaluate_button.grid(row=3, column=0, padx=10, pady=10)

        self.history_button = ttk.Button(bottom_frame, text="查看历史记录", command=self.view_history, style='TButton')
        self.history_button.grid(row=3, column=1, padx=10, pady=10)

        self.save_history_button = ttk.Button(bottom_frame, text="保存历史记录", command=self.save_history, style='TButton')
        self.save_history_button.grid(row=3, column=2, padx=10, pady=10)

    def get_answer(self):
        question = self.question_entry.get()
        if not question:
            messagebox.showwarning("输入错误", "请输入问题")
            return

        inputs = self.tokenizer(question, return_tensors='pt', padding='max_length', truncation=True, max_length=128)
        with torch.no_grad():
            input_ids = inputs['input_ids'].to(self.device)
            attention_mask = inputs['attention_mask'].to(self.device)
            logits = self.model(input_ids, attention_mask)
        
        if logits.item() > 0:
            answer_type = "羲和回答"
        else:
            answer_type = "零回答"

        specific_answer = self.get_specific_answer(question, answer_type)

        self.chat_text.insert(tk.END, f"用户: {question}\n", "user")
        self.chat_text.insert(tk.END, f"羲和: {specific_answer}\n", "xihua")

        # 添加到历史记录
        self.history.append({
            'question': question,
            'answer_type': answer_type,
            'specific_answer': specific_answer,
            'accuracy': None  # 初始状态为未评价
        })

    def get_specific_answer(self, question, answer_type):
        # 使用模糊匹配查找最相似的问题
        best_match = None
        best_ratio = 0.0
        for item in self.data:
            ratio = SequenceMatcher(None, question, item['question']).ratio()
            if ratio > best_ratio:
                best_ratio = ratio
                best_match = item

        if best_match:
            if answer_type == "羲和回答":
                return best_match['human_answers'][0]
            else:
                return best_match['chatgpt_answers'][0]
        return "这个我也不清楚,你问问零吧"

    def load_data(self, file_path):
        data = []
        if file_path.endswith('.jsonl'):
            with jsonlines.open(file_path) as reader:
                for i, item in enumerate(reader):
                    try:
                        data.append(item)
                    except jsonlines.jsonlines.InvalidLineError as e:
                        logging.warning(f"跳过无效行 {i + 1}: {e}")
        elif file_path.endswith('.json'):
            with open(file_path, 'r') as f:
                try:
                    data = json.load(f)
                except json.JSONDecodeError as e:
                    logging.warning(f"跳过无效文件 {file_path}: {e}")
        return data

    def load_model(self):
        model_path = os.path.join(PROJECT_ROOT, 'models/xihua_model.pth')
        if os.path.exists(model_path):
            self.model.load_state_dict(torch.load(model_path, map_location=self.device))
            logging.info("加载现有模型")
        else:
            logging.info("没有找到现有模型,将使用预训练模型")

    def train_model(self, retrain=False):
        file_path = filedialog.askopenfilename(filetypes=[("JSONL files", "*.jsonl"), ("JSON files", "*.json")])
        if not file_path:
            messagebox.showwarning("文件选择错误", "请选择一个有效的数据文件")
            return

        try:
            dataset = XihuaDataset(file_path, self.tokenizer)
            data_loader = DataLoader(dataset, batch_size=8, shuffle=True)
            
            # 加载已训练的模型权重
            if retrain:
                self.model.load_state_dict(torch.load(os.path.join(PROJECT_ROOT, 'models/xihua_model.pth'), map_location=self.device))
                self.model.to(self.device)
                self.model.train()

            optimizer = torch.optim.Adam(self.model.parameters(), lr=1e-5)
            criterion = torch.nn.BCEWithLogitsLoss()
            num_epochs = 30
            for epoch in range(num_epochs):
                train_loss = train(self.model, data_loader, optimizer, criterion, self.device, self.progress_var)
                logging.info(f'Epoch [{epoch+1}/{num_epochs}], Loss: {train_loss:.10f}')
                self.log_text.insert(tk.END, f'Epoch [{epoch+1}/{num_epochs}], Loss: {train_loss:.10f}\n')
                self.log_text.see(tk.END)
            torch.save(self.model.state_dict(), os.path.join(PROJECT_ROOT, 'models/xihua_model.pth'))
            logging.info("模型训练完成并保存")
            self.log_text.insert(tk.END, "模型训练完成并保存\n")
            self.log_text.see(tk.END)
            messagebox.showinfo("训练完成", "模型训练完成并保存")
        except Exception as e:
            logging.error(f"模型训练失败: {e}")
            self.log_text.insert(tk.END, f"模型训练失败: {e}\n")
            self.log_text.see(tk.END)
            messagebox.showerror("训练失败", f"模型训练失败: {e}")

    def evaluate_model(self):
        # 这里可以添加模型评估的逻辑
        messagebox.showinfo("评估结果", "模型评估功能暂未实现")

    def mark_correct(self):
        if self.history:
            self.history[-1]['accuracy'] = True
            messagebox.showinfo("评价成功", "您认为这次回答是准确的")

    def mark_incorrect(self):
        if self.history:
            self.history[-1]['accuracy'] = False
            question = self.history[-1]['question']
            baike_answer = self.search_baidu_baike(question)
            self.chat_text.insert(tk.END, f"百度百科结果: {baike_answer}\n", "xihua")
            messagebox.showinfo("评价成功", "您认为这次回答是不准确的")

    def search_baidu_baike(self, query):
        return search_baidu_baike(query)

    def view_history(self):
        history_window = tk.Toplevel(self.root)
        history_window.title("历史记录")

        history_text = tk.Text(history_window, height=20, width=80, font=("Arial", 12))
        history_text.pack(padx=10, pady=10)

        for entry in self.history:
            history_text.insert(tk.END, f"问题: {entry['question']}\n")
            history_text.insert(tk.END, f"回答类型: {entry['answer_type']}\n")
            history_text.insert(tk.END, f"具体回答: {entry['specific_answer']}\n")
            if entry['accuracy'] is None:
                history_text.insert(tk.END, "评价: 未评价\n")
            elif entry['accuracy']:
                history_text.insert(tk.END, "评价: 准确\n")
            else:
                history_text.insert(tk.END, "评价: 不准确\n")
            history_text.insert(tk.END, "-" * 50 + "\n")

    def save_history(self):
        file_path = filedialog.asksaveasfilename(defaultextension=".json", filetypes=[("JSON files", "*.json")])
        if not file_path:
            return

        with open(file_path, 'w') as f:
            json.dump(self.history, f, ensure_ascii=False, indent=4)

        messagebox.showinfo("保存成功", "历史记录已保存到文件")

# 主函数
if __name__ == "__main__":
    # 启动GUI
    root = tk.Tk()
    app = XihuaChatbotGUI(root)
    root.mainloop()

主要修改点:
增加百度百科搜索函数:search_baidu_baike函数用于从百度百科中搜索问题的相关信息。
修改mark_incorrect方法:当用户标记回答为不正确时,调用search_baidu_baike函数获取百度百科的结果,并将其显示在GUI的Text组件中。
文件结构:
main.py:主程序文件,包含所有代码。
logs/:日志文件存储目录。
models/:模型权重文件存储目录。
data/:训练数据文件存储目录。
运行步骤:
确保安装了所有依赖库,如torch, transformers, requests, beautifulsoup4等。
将训练数据文件放在data/目录下。
运行main.py启动GUI。
这样,当用户在GUI中输入问题并标记回答为不正确时,程序会自动从百度百科中搜索相关信息并显示在GUI中。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/921919.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

如何创建一个项目用于研究element-plus的原理

需求:直接使用element-plus未封装成组件的源码,创建一个项目,可以使用任意的element-plus组件,可以深度研究组件的运行。例如研究某一个效果,如果直接在node_modules修改elment-plus打包之后的那些js、mjs代码&#xf…

借助算力云跑模型

算力平台:FunHPC | 算力简单易用 AI乐趣丛生 该文章只讲述了最基本的使用步骤(因为我也不熟练)。 【注】:进入平台,注册登录账号后,才能租用。学生认证+实名认证会有免费的算力资源&#xff0…

C语言:函数指针精讲

1、函数指针 一个函数总是占用一段连续的内存区域,函数名在表达式中有事也会被转换为该函数所在内存区域的首地址,这和数组名非常类似,我们可以把函数这个首地址(或称入口地址)赋予一个指针变量,使指针变量…

CPU命名那些事

一、Intel CPU命名 1. 命名结构 Intel CPU 的命名通常包含以下几个部分: 品牌 产品线 系列 代数 具体型号 后缀 例如:Intel Core i7-13700K 2. 各部分含义 品牌 Intel:表示厂商(几乎所有命名中都有)。不同品…

几个bev模型部署常用的命令

python tools/create_data.py nuscenes --root-path ./data/nuscenes --out-dir ./data/nuscenes --extra-tag nuscenes --version v1.0-mini ##迷你版数据集 python tools/create_data.py nuscenes --root-path ./data/nuscenes --out-dir ./data/nuscenes --extra-tag nuscen…

Vue3-小兔鲜项目出现问题及其解决方法(未写完)

基础操作 (1)使用create-vue搭建Vue3项目 要保证node -v 版本在16以上 (2)添加pinia到vue项目 npm init vuelatest npm i pinia //导入creatPiniaimport {createPinia} from pinia//执行方法得到实例const pinia createPinia()…

Halo 正式开源: 使用可穿戴设备进行开源健康追踪

在飞速发展的可穿戴技术领域,我们正处于一个十字路口——市场上充斥着各式时尚、功能丰富的设备,声称能够彻底改变我们对健康和健身的方式。 然而,在这些光鲜的外观和营销宣传背后,隐藏着一个令人担忧的现实:大多数这些…

鸿蒙NEXT开发案例:随机数生成

【引言】 本项目是一个简单的随机数生成器应用,用户可以通过设置随机数的范围和个数,并选择是否允许生成重复的随机数,来生成所需的随机数列表。生成的结果可以通过点击“复制”按钮复制到剪贴板。 【环境准备】 • 操作系统:W…

Linux 下的IO模型

一:四种IO模 1.1:阻塞式IO(最简单,最常用,效率最低) 阻塞I/O 模式是最普遍使用的I/O 模式,大部分程序使用的都是阻塞模式的I/O 。 缺省情况下(及系统默认状态)&#xf…

深度可观察性:它是什么,为什么我们需要它?

随着混合云基础设施成为现代企业的支柱,威胁形势的发展速度比以往任何时候都快。 越来越老练的攻击者、隐藏的漏洞和复杂的监管要求使 IT 和安全团队更难确保在这个复杂的环境中提供强大的保护。 2024 年 Gigamon 混合云安全调查显示,安全和 IT 领导者…

【附代码原理】偏正态分布的数据处理方法

文章目录 相关教程基本信息数学定义参数的影响Python 实现安装 scipy生成和绘制偏正态分布的数据 解释应用 右偏(即长尾在右侧)的正态分布1. 对数变换 (Log Transformation)2. 平方根变换 (Square Root Transformation)3. Box-Cox 变换注意事项 左偏&…

【STM32】MPU6050简介

文章目录 MPU6050简介MPU6050关键块带有16位ADC和信号调理的三轴MEMS陀螺仪具有16位ADC和信号调理的三轴MEMS加速度计I2C串行通信接口 MPU6050对应的数据手册:MPU6050 陀螺仪加速度计 链接: https://pan.baidu.com/s/13nwEhGvsfxx0euR2hMHsyw?pwdv2i6 提取码: v2i6…

一篇快速上手 Axios,一个基于 Promise 的网络请求库(涉及原理实现)

Axios 1. 介绍1.1 什么是 Axios?1.2 axios 和 ajax 的区别 2. 安装使用3. Axios 基本使用3.1 Axios 发送请求3.2 其他方式发送请求3.3 响应结构3.4 Request Config3.5 默认配置3.6 创建实例对象发送请求 3.7 拦截器3.8 取消请求 4. 模拟 Axios4.1 axios 对象创建过程…

趋势洞察|AI 能否带动裸金属 K8s 强势崛起?

随着容器技术的不断成熟,不少企业在开展私有化容器平台建设时,首要考虑的问题就是容器的部署环境——是采用虚拟机还是物理机运行容器?在往期“虚拟化 vs. 裸金属*”系列文章中,我们分别对比了容器部署在虚拟化平台和物理机上的架…

Unity-添加世界坐标系辅助线

如果你想在场景中更直观地显示世界坐标系,可以通过编写一个简单的脚本来实现。下面是一个基本的示例脚本,它会在场景中绘制出世界坐标系的三个轴: using UnityEngine;public class WorldAxesIndicator : MonoBehaviour {public float length…

决策树分类算法【sklearn/决策树分裂指标/鸢尾花分类实战】

决策树分类算法 1. 什么是决策树?2. DecisionTreeClassifier的使用(sklearn)2.1 算例介绍2.2 构建决策树并实现可视化 3. 决策树分裂指标3.1 信息熵(ID3)3.2 信息增益3.3 基尼指数(CART) 4. 代码…

5分钟轻松搭建Immich图片管理软件并实现公网远程传输照片

文章目录 前言1.关于Immich2.安装Docker3.本地部署Immich4.Immich体验5.安装cpolar内网穿透6.创建远程链接公网地址7.使用固定公网地址远程访问 前言 本篇文章介绍如何在本地搭建lmmich图片管理软件,并结合cpolar内网穿透实现公网远程访问到局域网内的lmmich&#…

React和Next.js的相关内容

React–前端框架 React 是一个用于构建用户界面的 JAVASCRIPT 库。 React 主要用于构建 UI,很多人认为 React 是 MVC 中的 V(视图)。 React 起源于 Facebook 的内部项目,用来架设 Instagram 的网站,并于 2013 年 5 …

【LeetCode热题100】队列+宽搜

这篇博客是关于队列宽搜的几道题&#xff0c;主要包括N叉树的层序遍历、二叉树的锯齿形层序遍历、二叉树最大宽度、在每个数行中找最大值。 class Solution { public:vector<vector<int>> levelOrder(Node* root) {vector<vector<int>> ret;if(!root) …

丹摩征文活动|基于丹摩算力的可图(Kolors)的部署与使用

Kolors是一个以生成图像为目标的人工智能系统&#xff0c;可能采用了类似于OpenAI的DALLE、MidJourney等文本生成图像的技术。通过自然语言处理&#xff08;NLP&#xff09;和计算机视觉&#xff08;CV&#xff09;相结合&#xff0c;Kolors能够根据用户提供的文本描述生成符合…