sql专题 之 三大范式

文章目录

  • 背景
  • 范式介绍
    • 第一范式:属性不可再分
    • 第二范式
    • 第三范式
    • 注意事项
  • 为什么不遵循后续的范式
  • 数据库范式在实际应用中会遇到哪些挑战?

背景

  • 数据库的范式(Normal Form)是一组规则,用于设计数据库表结构以 减少数据冗余提高数据完整性
  • 范式的概念最早由埃德加·科德(Edgar F. Codd)提出,他是关系型数据库之父。
  • 范式是一系列的 设计规则

    从第一范式到更高的范式(如第二范式2NF、第三范式3NF、Boyce-Codd范式(BCNF)、第四范式4NF、第五范式NF等)。
    每个层次都建立在前一个层次的基础上,进一步消除数据冗余和依赖关系。

  • 范式虽然分为多个级别,但最常用的是前三个范式:第一范式(1NF)、第二范式(2NF)、第三范式(3NF)

范式介绍

接下来我们会用一个学生信息存储表来举例来了解一下三大范式的规则。
这张表需存储:学生学号学生姓名考试分数分数等级考试科目手机号码 信息。

  • 初始表格 【表_0】 如下:
    在这里插入图片描述

第一范式:属性不可再分

First Normal Form,但是通常我们用“1NF”来表示

  • 定义

    如果一个表符合第一范式,么这个表中的每个字段都必须包含单一值,而不能是数组或者集合。
    即表中的每个属性都是原子的,不可再分割

  • 特点
    • 所有列的值都不可再分割,且没有重复的列
    • 每行都是唯一的
  • 示例解析

    【表_0】中,score列存储了分数和分数等级两个数据。

  • 缺点:
    • (1)如果需要求学生的总分时,还需要对数据进行切割,损耗了性能
    • (2)如果需要等级A的学生的总数时,只能进行模糊查询,损耗率性能
    • (3)不能按照分数或者分数等级进行分组排序
  • 优化:
    • 将分数和等级拆分成 score 和 score_level 两个字段。优化结果如下【表_1】
      在这里插入图片描述

第二范式

Second Normal Form,但是通常我们用“2NF”来表示

  • 定义

    在满足第一范式的基础上,消除部分依赖
    即,每个非主属性必须依赖于整个主键,而不能仅依赖于部分主键

  • 特点

    1、第二范式一定是第一范式,第一范式是基础
    2、非主属性不能依赖部分属性(没懂不要急,马上就要解释了)

  • 示例解释
    • 【表_1】中,学号(sno)+学科(subject)可以唯一的确定一列。所以【sno+subject】为主键。
      但是学生姓名(sname) 和 电话号码(phone)确是只依赖于sno存在的。
  • 缺点:
    • 数据产生了大量的冗余数据,会增加查询的耗时,也会增加数据一致性的维护成本

      假如学生有十门考试成绩,那么就会存储十份电话号码。
      如果某一个数据出现了不一致的情况,就会不确定正确的数据是哪个了

  • 优化:我们对表进行拆分成【个人信息表】 和【考试成绩表】
    在这里插入图片描述
    在这里插入图片描述

第三范式

Thrid Normal Form,但是通常我们用“3NF”来表示

  • 定义

    在满足第二范式的基础上,消除传递依赖,即非主属性不能依赖于其他非主属性

  • 特点

    所有非主属性都直接依赖于主键,而不能依赖于其他非主属性

  • 示例解释

    在上边的学生信息表中,score_level的取值依赖于score的值。
    如果 score >= 90,那么 score_level=“A”;
    如果71<= score <= 89,那么 score_level=“B”;
    如果 score <= 70,那么 score_level=“C”;

  • 优化:将score_level拆分出来成一个等级表,且该等级表不会改变
    (这里数字太多,我们就只写上边出现的数字吧)
    在这里插入图片描述
    在这里插入图片描述

    这里举例用分数不太恰当,感受不出第三范式的简洁来。
    我们可以这么理解,在公司中的员工考核,评价A+\A\A-,等级均为A;评价B+\B\B-,等级均为B;
    评价C+\C\C-,等级均为C;
    然后我们在等级表中,就只需要存储9条信息就可以了。对比与将考核等级仅满足第二范式,这样可以更清楚的了解等级的划分标准。

注意事项

  • 虽然三大范式是数据库的基本原则,但是在实际情况中也需要根据实际项目情况进行取舍,不要过度追求规范化

    过度规范化可能会导致数据表数量增多、关系变得更加复杂,从而增加查询和维护的难度

  • 如果是大数据量,如表里数据有2000w+,查询时需要关联多张表才能取到完整的数据,造成性能瓶颈。这时候我们可以在表中适当的冗余(用空间换时间~)
  • 所以,在设计数据库时需要根据实际需求进行灵活调整

为什么不遵循后续的范式

  • 在实际应用中,数据库的设计并不需要达到BCNF级别,更不用说4NF\5NF。
    • 1、随着范式的提高,数据库的设计变得更复杂也更难维护
    • 2、高范式可能导致更多的连表查询,影响数据库的性能
    • 3、虽然存在更多范式,但实际中1NF、2NF、3NF常被提及和使用
      (虽然我们大学也学高数,但实际生活中买东西,我们并不需要去求导~😏😏😏)

数据库范式在实际应用中会遇到哪些挑战?

  • 1、设计复杂度高

    高范式的设计意味着更多的表和更复杂的表关系,增加了数据库的设计和理解难度

  • 2、性能下降

    高范式下查询因为要多表连接,会导效率下降,尤其在大数据和高并发访问的场景下尤为明显。

  • 3、存储空间更大

    因为数据不断拆分为多个表,会占用更多的存储空间

  • 4、数据一致性的维护

    在更改一个数据时,需要确保相关表中的数据都得更新

  • 5、插入、更新、删除异常

    在非常严格范式的要求下,如果要增加一条数据,需要先检查多个表。在更新或者删除时,也可能因为依赖关系而更新或者删除不成功

  • 6、数据冗余

    有时为了提升效率而故意引入冗余数据

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/913174.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Linux下进程链接结构,命令行参数,环境变量

bash 是一种 shell。在 Linux 系统中&#xff0c;当我们在终端输入命令时&#xff0c;通常是在一个 shell 环境下进行的。如果这个 shell 是 bash&#xff0c;那么所有命令行执行的命令都是 bash 的子进程。 1.Linux下进程链接结构 进程链接补充知识&#xff1a; 所有进程都…

FPGA实现串口升级及MultiBoot(八)四样错误实例演示

本文目录索引 一个指令和三种方式二种位流和四样错误Golden位流工程Watchdog的原理1、打开自己使用的Vivado版本的TCL SHELL2、进入multiboot_address_table.tcl 文件所在目录3、运行 multiboot_address_table.tcl 文件4、按照需求输入参数启动地址确定MultiBoot位流工程验证ex…

信息安全工程师(84)UNIX/Linux操作系统安全分析与防护

前言 UNIX/Linux操作系统&#xff0c;尤其是Linux&#xff0c;以其开放性、稳定性和安全性在服务器、桌面、嵌入式设备和超级计算机中占据重要地位。然而&#xff0c;没有任何操作系统可以百分之百地保证安全&#xff0c;UNIX/Linux也不例外。 一、UNIX/Linux操作系统安全分析 …

day08(单片机)时钟系统+定时器+PWM

目录 时钟系统定时器PWM 时钟系统 时钟基本概念 时钟源 晶体振荡器&#xff08;Crystal Oscillator&#xff09; RC振荡器&#xff08;Resistor-Capacitor Oscillator&#xff09; ​​​​​​​STM32U5时钟源 HSI(High Speed Internal) HSE(High Speed External) LSI(Low Spe…

【JavaEE初阶 — 多线程】内存可见性问题 volatile

1. 内存可见性问题 内存可见性的概念 什么是内存可见性问题呢&#xff1f; 当一个线程对共享变量进行了修改&#xff0c;那么另外的线程都是立即可以看到修改后的最新值。在Java中&#xff0c;可以借助 synchronized、volatile 以及各种Lock 实现可见性。如果我们将变量声…

通用特效Shader

一、通用特效Shader介绍 1.1 什么是通用特效材质 Unity支持SRP Batcher后&#xff0c;使用UberShader的优势非常明显。所谓&#xff0c;UberShader&#xff0c;即一个超级Shader&#xff0c;覆盖一类功能&#xff0c;而不是多个分散的小Shader&#xff0c;比如一个通用特效Sh…

spark-本地模式的配置和简单使用

python环境的安装 在虚拟机中&#xff0c;只能安装一个python的版本&#xff0c;若想要安装别的版本&#xff0c;则需要卸载之前的版本——解决方式&#xff0c;安装Anaconda 通过百度网盘分享的文件&#xff1a;Anaconda3-2021.05-Linux-x86_64.sh 链接&#xff1a;https://…

分享三个python爬虫案例

一、爬取豆瓣电影排行榜Top250存储到Excel文件 近年来&#xff0c;Python在数据爬取和处理方面的应用越来越广泛。本文将介绍一个基于Python的爬虫程序&#xff0c;用于抓取豆瓣电影Top250的相关信息&#xff0c;并将其保存为Excel文件。 获取网页数据的函数&#xff0c;包括以…

PyQt5 详细安装与配置教程及使用

文章目录 Part1&#xff1a;安装 PyQt5Part2&#xff1a;配置 PyQt5 的依赖工具 QtDesigner 和 PyUICPart3&#xff1a;使用QtDesigner设计界面Part4&#xff1a;使用PyUIC将设计好的界面转换为.py文件Part5&#xff1a;通过代码显示ui界面 Part1&#xff1a;安装 PyQt5 需要安…

ssm079基于SSM框架云趣科技客户管理系统+jsp(论文+源码)_kaic

毕 业 设 计&#xff08;论 文&#xff09; 题目&#xff1a;客户管理系统设计与实现 摘 要 现代经济快节奏发展以及不断完善升级的信息化技术&#xff0c;让传统数据信息的管理升级为软件存储&#xff0c;归纳&#xff0c;集中处理数据信息的管理方式。本客户管理系统就是在这…

C语言 | Leetcode C语言题解之第556题下一个更大元素III

题目&#xff1a; 题解&#xff1a; int nextGreaterElement(int n){int x n, cnt 1;for (; x > 10 && x / 10 % 10 > x % 10; x / 10) {cnt;}x / 10;if (x 0) {return -1;}int targetDigit x % 10;int x2 n, cnt2 0;for (; x2 % 10 < targetDigit; x2…

华为大变革?仓颉编程语言会代替ArkTS吗?

在华为鸿蒙生态系统中&#xff0c;编程语言的选择一直是开发者关注的焦点。近期&#xff0c;华为推出了自研的通用编程语言——仓颉编程语言&#xff0c;这引发了关于仓颉是否会取代ArkTS的讨论。本文将从多个角度分析这两种语言的特点、应用场景及未来趋势&#xff0c;探讨仓颉…

Linux:基本开发工具

一&#xff1a;编辑器vim 1.1vim的基本概念 vim其实有多重模式&#xff0c;这里我们主要了解vim的三种模式&#xff0c;分别是命令模式&#xff08;command mode&#xff09;,插入模式(Insert mode)和底行模式(lst line mode) 正常/普通/命令模式(Normal mode) …

第14张 GROUP BY 分组

一、分组功能介绍 使用group by关键字通过某个字段进行分组&#xff0c;对分完组的数据分别 “SELECT 聚合函数”查询结果。 1.1 语法 SELECT column, group_function(column) FROM table [WHERE condition] [GROUP BY group_by_expression] [ORDER BY column]; 明确&#…

TVM计算图分割--BYOC框架

文章目录 BYOC架构算子标注单算子标注复合算子标注Cost-based PartitionCodegenCodegen for C代码生成流程概览代码生成工程实现实现CodegenC实现CSourceCodegenCodegen for JSON实现JsonCodegenRuntimeJSONRuntime参考随着后端设备数量激增,为达到较高的效果在这些设备上,对…

计算机毕业设计Python+卷积神经网络股票预测系统 股票推荐系统 股票可视化 股票数据分析 量化交易系统 股票爬虫 股票K线图 大数据毕业设计 AI

温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 作者简介&#xff1a;Java领…

qt QShortcut详解

1、概述 QShortcut是Qt框架中的一个类&#xff0c;它提供了一种创建键盘快捷键的方式。通过QShortcut&#xff0c;开发者可以将特定的键盘组合&#xff08;如CtrlC、AltF4等&#xff09;与应用程序中的动作&#xff08;如复制、关闭窗口等&#xff09;关联起来。当用户在应用程…

C++OJ_二叉树的层序遍历

✨✨ 欢迎大家来到小伞的大讲堂✨✨ &#x1f388;&#x1f388;养成好习惯&#xff0c;先赞后看哦~&#x1f388;&#x1f388; 所属专栏&#xff1a;C_OJ 小伞的主页&#xff1a;xiaosan_blog 二叉树的层序遍历 102. 二叉树的层序遍历 - 力扣&#xff08;LeetCode&#xff0…

The Rank-then-Encipher Approach

原始观点 Format-Preserving Encryption 4 The Rank-then-Encipher Approach 引用1 Hybrid diffusion-based visual image encryption for secure cloud storage 2.2 Sum-preserving encryption Bellare introduced the concept of format-preserving encryption (FPE)…

DolphinDB 与南方科技大学联合授课啦!

11月1日&#xff0c;南方科技大学商学院和 DolphinDB 联合举办了高校课程讲座。讲座由南方科技大学商学院高级研究学者冯鹏举主持&#xff0c;DolphinDB 创始人兼 CEO 周小华博士、某百亿私募数据平台架构师潜蛟老师进行精彩演讲。 Part 1 : 大数据时代下数据库架构革新与生态…