YOLOv11模型架构以及使用命令介绍

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】
11.【基于YOLOv8深度学习的安全帽目标检测系统】12.【基于YOLOv8深度学习的120种犬类检测与识别系统】
13.【基于YOLOv8深度学习的路面坑洞检测系统】14.【基于YOLOv8深度学习的火焰烟雾检测系统】
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】16.【基于YOLOv8深度学习的舰船目标分类检测系统】
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】18.【基于YOLOv8深度学习的血细胞检测与计数系统】
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统】20.【基于YOLOv8深度学习的水稻害虫检测与识别系统】
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统】22.【基于YOLOv8深度学习的路面标志线检测与识别系统】
23.【基于YOLOv8深度学习的智能小麦害虫检测识别系统】24.【基于YOLOv8深度学习的智能玉米害虫检测识别系统】
25.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统】26.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统】
27.【基于YOLOv8深度学习的人脸面部表情识别系统】28.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统】
29.【基于YOLOv8深度学习的智能肺炎诊断系统】30.【基于YOLOv8深度学习的葡萄簇目标检测系统】
31.【基于YOLOv8深度学习的100种中草药智能识别系统】32.【基于YOLOv8深度学习的102种花卉智能识别系统】
33.【基于YOLOv8深度学习的100种蝴蝶智能识别系统】34.【基于YOLOv8深度学习的水稻叶片病害智能诊断系统】
35.【基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统】36.【基于YOLOv8深度学习的智能草莓病害检测与分割系统】
37.【基于YOLOv8深度学习的复杂场景下船舶目标检测系统】38.【基于YOLOv8深度学习的农作物幼苗与杂草检测系统】
39.【基于YOLOv8深度学习的智能道路裂缝检测与分析系统】40.【基于YOLOv8深度学习的葡萄病害智能诊断与防治系统】
41.【基于YOLOv8深度学习的遥感地理空间物体检测系统】42.【基于YOLOv8深度学习的无人机视角地面物体检测系统】
43.【基于YOLOv8深度学习的木薯病害智能诊断与防治系统】44.【基于YOLOv8深度学习的野外火焰烟雾检测系统】
45.【基于YOLOv8深度学习的脑肿瘤智能检测系统】46.【基于YOLOv8深度学习的玉米叶片病害智能诊断与防治系统】
47.【基于YOLOv8深度学习的橙子病害智能诊断与防治系统】48.【基于深度学习的车辆检测追踪与流量计数系统】
49.【基于深度学习的行人检测追踪与双向流量计数系统】50.【基于深度学习的反光衣检测与预警系统】
51.【基于深度学习的危险区域人员闯入检测与报警系统】52.【基于深度学习的高密度人脸智能检测与统计系统】
53.【基于深度学习的CT扫描图像肾结石智能检测系统】54.【基于深度学习的水果智能检测系统】
55.【基于深度学习的水果质量好坏智能检测系统】56.【基于深度学习的蔬菜目标检测与识别系统】
57.【基于深度学习的非机动车驾驶员头盔检测系统】58.【太基于深度学习的阳能电池板检测与分析系统】
59.【基于深度学习的工业螺栓螺母检测】60.【基于深度学习的金属焊缝缺陷检测系统】
61.【基于深度学习的链条缺陷检测与识别系统】62.【基于深度学习的交通信号灯检测识别】
63.【基于深度学习的草莓成熟度检测与识别系统】64.【基于深度学习的水下海生物检测识别系统】
65.【基于深度学习的道路交通事故检测识别系统】66.【基于深度学习的安检X光危险品检测与识别系统】
67.【基于深度学习的农作物类别检测与识别系统】68.【基于深度学习的危险驾驶行为检测识别系统】
69.【基于深度学习的维修工具检测识别系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~

《------正文------》

目录

  • YOLOv11基本架构
  • YOLOv11目标检测使用指令
  • YOLOv11其他命令

YOLOv11基本架构

YOLOv11是YOLO系列的最新产品。YOLO是一种几乎无与伦比的算法,在物体检测领域取得了非常成功的结果。该算法系列在YOLOv5之后继续由Ultralytics开发,每一个新模型都继续产生更好的性能。

img

YOLOv11是Ultralytics开发的最新YOLO型号。该模型在执行实时对象检测的同时继续平衡准确性和效率。基于之前的YOLO版本,YOLO 11在架构和培训方面进行了重大改进。在保持速度的同时提高性能的最重要的架构变化是增加了C3K2块、SPFF模块和C2PSA块。
在这里插入图片描述

C3 K2块: 这是对之前版本中引入的CSP(跨阶段部分)块的增强。该模块使用不同的内核大小(例如3x3或5x5)和通道分离策略优化更复杂特征的提取。

SPFF(Spatial Pyramid Pooling Fusion)模块: 它是在YOLO版本中使用的SPP(Spatial Pyramid Pooling)模块的优化版本。该模块通过捕获不同尺度下的对象属性,使模型能够更好地执行。

C2 PSA块: 该块通过结合通道和空间信息提供更有效的特征提取。它还与多头注意机制一起工作,从而能够更准确地感知物体。它优化了前几层的特征图,并使用注意力机制来丰富它们,以提高模型的性能。这种结构可以实现更精确的检测,特别是在复杂场景中,并提高了YOLOv11的准确性。

除了这些架构上的变化,YOLOv11还具有与YOLOv8一样的多模型功能。由于其多模型功能,YOLOv11可以执行的任务如下:

  • 目标检测: 识别和定位图像中的目标。
  • 实例分割: 检测对象并确定其边界。
  • 分类: 将图像分类到预定义的类别中。
  • 姿态估计: 检测和跟踪人体上的地标。
  • 定向对象检测(OBB): 检测旋转对象以获得更高的灵敏度。

在我们开始使用它之前,让我们来谈谈新版本的YOLO所带来的功能。

  • 现有的主干结构已被C3K2块取代,以提高特征提取能力。
  • 颈部结构已通过SPFF模块进行了改进,以捕获不同尺寸的物体,并更好地检测小物体。
  • 增加了C2PSA块, 以聚焦较小或部分遮挡的物体中的重要区域。
  • 任务的数量随着多模型功能的增加而增加。
  • 更好地适应各种环境,包括边缘设备。
  • 由于其优化的架构和高效的处理能力,它可以部署在边缘设备,云平台和支持NVIDIA GPU的系统上。

由于这些优化和创新,YOLOv11提供了性能提升,特别是在实时应用中。该模型运行速度更快,更准确,提高了目标检测,样本分割和姿态估计等任务的效率。此外,兼容性得到了改进,因此模型可以轻松地在不同的平台和硬件(例如云或边缘设备)上运行。

在Ultralyricts页面上,当他们评估YOLOv11与以前版本相比的性能时,他们说了以下内容。

随着模型设计的进步,YOLO11m在COCO数据集上实现了更高的平均精度(mAP),同时使用的参数比YOLOv8m少22%,使其在不影响精度的情况下提高了计算效率。

然而,尽管YOLOv 11模型的性能良好,并且提供了广泛的范围,但与YOLOv 10相比,它在目标检测方面并不十分成功。虽然YOLOv 10有更多的参数,但YOLOv 11的性能更好,只有很小的差异(+0.1-0.5)。在这种情况下,YOLOv 10可能仍然是我们的首选,因为过多的参数会导致速度和成本的损失。

在这里插入图片描述

YOLOv11目标检测使用指令

使用PyTorch构建YOLOv11模型及其与其他模式的使用简要如下。

步骤1: 首先,我们需要下载Ultralytics库。使用这个库,我们可以运行从YOLOv3到YOLOv11的所有模型。

pip install ultralytics

步骤2: 如果你只想在训练好的模型中进行预测。下面的代码就足够了。否则你可以跳过它。

yolo predict model=yolo11n.pt source='https://ultralytics.com/images/bus.jpg'py

步骤3: 如果你说不,我想训练我的模型,你可以选择你想要的模型并下载.pt文件。

from ultralytics import YOLO

# Load a COCO-pretrained YOLO11n model
model = YOLO("yolo11n.pt")

步骤4: 然后您需要选择训练数据,epochs的数量,图像的大小和您的设备。

train_results = model.train(
    data="coco8.yaml",  # path to dataset YAML
    epochs=100,  # number of training epochs
    imgsz=640,  # training image size
    device="cpu",  # device to run on, i.e. device=0 or device=0,1,2,3 or device=cpu
)

步骤5: 您需要使用验证数据评估和测试模型。它将验证数据与训练数据本身分离,对于测试,您只需提供所需图像的路径。

metrics = model.val()

results = model("path/to/image.jpg")
results[0].show()

步骤6: 在最后一步中,我们可以导出您的模型,并在以后反复使用它。如果你想用自己的模型进行预测,只需使用步骤2。

path = model.export(format="onnx")

YOLOv11其他命令

要使用您自己的数据以特定的学习率和epoch训练您的对象检测模型:

yolo train data=coco8.yaml model=yolo11n.pt epochs=10 lr0=0.01

对于模型验证:

yolo val model=yolo11n.pt data=coco8.yaml batch=1 imgsz=640

要在YouTube视频上测试模型的结果,图像大小为320:

yolo predict model=yolo11n.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320

要使用预训练的分割模型预测具有320个图像大小的YouTube视频:

yolo segment predict model=yolo11n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320

要将经过特殊训练的模型导出为.pt扩展名,请执行以下操作:

yolo export model=path/to/best.pt format=onnx

在这里插入图片描述

在这里插入图片描述

好了,这篇文章就介绍到这里,喜欢的小伙伴感谢给点个赞和关注,更多精彩内容持续更新~~
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/907579.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【高等数学】1函数极限连续

1. 函数 复合函数的性质及其图形 反函数的性质及其图形 分段函数的性质及其图形 隐函数的性质及其图形 基本初等函数(通常包括幂函数、指数函数、对数函数、三角函数、反三角函数)的性质及其图形 初等函数(由基本初等函数经过有限次的四则运算和复合运算所得到的函数)…

评估 机器学习 回归模型 的性能和准确度

回归 是一种常用的预测模型,用于预测一个连续因变量和一个或多个自变量之间的关系。 那么,最后评估 回归模型 的性能和准确度非常重要,可以帮助我们判断模型是否有效并进行改进。 接下来,和大家分享如何评估 回归模型 的性能和准…

移植 AWTK 到 纯血鸿蒙 (HarmonyOS NEXT) 系统 (6) - 触屏事件

AWTK 作为一个GUI引擎,自然少不了对触屏事件的支持。这里我们先支持单点触摸,后续再支持多点手势。 1. 注册 XComponent 的触屏事件回调 这个在 AppNapi 的构造函数中完成: AppNapi::AppNapi(std::string &id) {id_ id;component_ n…

2024年大厂AI大模型面试题精选与答案解析

前言 随着AI市场,人工智能的爆火,在接下来的金九银十招聘高峰期,各大科技巨头和国有企业将会对AGI人才的争夺展开一场大战,为求职市场注入了新的活力。 为了助力求职者在面试中展现最佳状态,深入理解行业巨头的选拔标…

GNN 训练点击-购买 预测模型

搜集到click-buy数据集, 数据集分享在网盘 通过百度网盘分享的文件:数据集_20241031_220915 链接:https://pan.baidu.com/s/1qcXAO_P1h3Vrrui5qFbYLw?pwd6f3m 其中 yoochoose-buys.dat 特征含义buy_df.columns [session_id, timestamp, …

SpringMvc day1102

ok了家人们今天我们学习SpringMvc,之后学习SpringBoot,let‘s go 六.拦截器 6.1 拦截器概述 Spring MVC 的处理器拦截器类似于 Servlet 开发中的过滤器 Filter ,用于对处理器 ( 自己编写的 Controller) 进行预处理和后 处理。用户可以自…

项目管理(风险:范围、成本、时间、质量)

项目管理主要是围绕着范围、成本、时间、质量,每个部分都存在不同的风险。 存在潜在的风险方面,也有可能是法律风险、合作方带来的风险等。 减少风险: 提前与技术沟通方案。产品内部先讨论。每日例会:同步信息,减少…

6.0、静态路由

路由器最主要的功能就是转发数据包。路由器转发数据包时需要查找路由表(你可以理解为地图),管理员可以直接手动配置路由表,这就是静态路由。 1.什么是路由? 在网络世界中,路由是指数据包在网络中的传输路…

网络层3——IP数据报转发的过程

目录 一、基于终点的转发 1、理解 2、IP数据报转发过程 二、最长前缀匹配 1、理解 2、主机路由 3、默认路由 三、二叉线索查找 一、基于终点的转发 1、理解 理解什么叫终点转发 IP数据报的传递,交给路由器后 可不可以做到直接发送给目的主机呢?…

VMware虚拟机Debian扩展磁盘

一、 版本 VMware:Workstation 17 Pro虚拟机:Debian11 二、 VMware虚拟机扩展 虚拟机关机状态快照或者备份:以免扩容失败导致文件丢失虚拟机——设置——硬盘——磁盘使用工具——扩展——扩展磁盘容量——设置为想要的大小 三、 虚拟机…

新能源汽车的未来:车载电源与V2G技术的前景

近年来,新能源汽车在全球市场上发展迅速,尤其是在中国,新能源汽车的月销量已经超过了燃油车。随着新能源技术的不断发展,新能源汽车不仅仅是作为出行工具,而逐渐成为“移动能源站”。本文将探讨电动汽车的车载外放电功…

JavaScript知识点梳理及案例实践

1. Date对象 创建Date对象 //方法1:不指定参数 var nowd1new Date(); console.log(nowd1.toLocaleString( )); //方法2:参数为日期字符串 var d2new Date("2004/3/20 11:12"); console.log(d2.toLocaleString( )); var d3new Date("04/…

[vulnhub]DC:7

https://www.vulnhub.com/entry/dc-7,356/ 端口扫描主机发现 探测存活主机,178是靶机 nmap -sP 192.168.75.0/24 Starting Nmap 7.94SVN ( https://nmap.org ) at 2024-11-03 13:30 CST Nmap scan report for 192.168.75.1 Host is up (0.00037s l…

探索React源码:React Diff

本篇文章我们来了解一下Diff算法的实现过程。 相关概念 React中的各种节点 假设当前存在一个DOM节点,触发了一次更新,那么在协调的过程中,会有四种节点和该节点相关联: 该DOM节点本身。 workInProgress fiber,更新过程…

开源库 FloatingActionButton

开源库FloatingActionButton Github:https://github.com/Clans/FloatingActionButton 这个库是在前面这个库android-floating-action-button的基础上修改的,增加了一些更强大和实用的特性。 特性: Android 5.0 以上点击会有水波纹效果 可以选择自定义…

微服务设计模式 - 重试模式(Retry Pattern)

微服务设计模式 - 重试模式(Retry Pattern) 定义 重试模式(Retry Pattern)是一种微服务中的设计模式,用于在临时性失败(如网络故障或暂时不可用的服务)发生时,自动重新尝试请求&…

HTML 基础标签——链接标签 <a> 和 <iframe>

文章目录 1. `<a>` 标签属性详细说明示例2. `<iframe>` 标签属性详细说明示例注意事项总结链接标签在HTML中是实现网页导航的重要工具,允许用户从一个页面跳转到另一个页面或嵌入外部内容。主要的链接标签包括 <a> 标签和<iframe> 标签。本文将深入探…

Netty 组件介绍 - Future Promise

在异步处理时&#xff0c;经常用到这两个接口 netty 中的 Future 继承 jdk 中的 FutuFuture&#xff0c;而Promise 又对 netty Future 进行了扩展。 idk Future 只能同步等待任务结束&#xff08;或成功或失败)才能得到结果netty Future 可以同步等待任务结束得到结也可以异…

Excel:vba实现批量插入图片批注

实现的效果&#xff1a;实现的代码如下&#xff1a; Sub InsertImageNamesAndPictures()Dim PicPath As StringDim PicName As StringDim PicFullPath As StringDim RowNum As IntegerDim Name As StringDim Comment As CommentDim folder As FileDialog 定义文件选择对话框 清…

C++(类和对象-友元)

友元的作用 作用&#xff1a; 在C中&#xff0c;友元&#xff08;friend&#xff09;是一种特殊的类成员&#xff0c;它可以让一个函数或者类访问其他类的私有&#xff08;private&#xff09;和保护&#xff08;protected&#xff09;成员。 注意&#xff1a; 友元的使用应该谨…