[网络协议篇] UDP协议

文章目录

  • 1. 简介
  • 2. 特点
  • 3. UDP数据报结构
  • 4. 基于UDP的应用层协议
  • 5. UDP安全性问题
  • 6. 使用udp传输数据的系统就一定不可靠吗?
  • 7. 基于UDP的主机探活 python实现

1. 简介

User Datagram Protocol,用户数据报协议,基于IP协议提供面向无连接的网络通信服务。特点:简单不可靠面向数据报。 UDP协议位于ISO网络模型的传输层

2. 特点

特点解释:

  • 无连接: 两台主机在使用UDP进行数据传输时,不需要建立连接,只需要知道对方端的IP和端口号即可把数据发送过去。
  • 不可靠:UDP协议没有确认重传机制,如果因为网络故障导致报文无法发到对方,或者对方接收到了报文,但是传输过程中乱序了,对方检验失败后把乱序的包丢了,UDP协议层也不给应用层任何错误反馈信息。
  • 面向数据报:以数据报文为单位一个个发出去,然后一个个接收的,导致上面的应用层无法灵活控制数据的读写次数和数量。

3. UDP数据报结构

image.png

  • 源端口号: 发送方的端口,用于唯一确认发送方主机的一个进程。 大小范围1-65535
  • 目的端口: 接收方的端口,用于唯一确认接收方主机的一个进程。大小范围1-65535
  • UDP长度:一个UDP报文所能传输的最大长度是64K,包含UDP首部。
  • UDP校验和: 为了确保数据包在传送过程中,数据检测数据是否被篡改和丢失的一种手段。通过二进制补码求和进行校验,校验和的内容包括:
    • 伪首部(IP数据包的一部分):源IP地址(32位),目的IP地址(32位),保留字段(8位, 0), 协议号(8位, 指定为17,代表udp)UDP长度(16) UDP数据报的总长度,包括头部和数据
    • UDP首部:源端口号、目的端口号、长度字段、校验和字段(初始值为0)
    • UDP数据: 实际传输的应用层数据。

端口和应用程序的关系: 1. 主机运行的一个进程可以绑定多个端口号。2.一个主机的某一个端口只能被一个进程所绑定。 可以推导出一个主机上的端口可以唯一确认主机上的一个进程,

4. 基于UDP的应用层协议

  • DNS协议: 域名解析协议, 域名 => IP.
  • DHCP协议:动态主机配置协议, 为设备动态分配IP地址、网关、DNS服务器等网络参数。
  • NTP协议: 用于同步网络中的设备时钟。
  • SNMP协议: 用于网络设置的监控和管理,如路由器、交换机等。
  • RIP协议: 路由信息协议,是一种距离向量路由协议,用于在网络设备间交换路由信息。

上述协议的几个明显的特点:

  • 传输数据一般都比较小。
  • 对速度要求较高,延迟时间低
  • 不需要或者无法进行连接.(例如dhcp初次启动时,设备根本就没有ip地址)
  • 由于网络问题丢失数据也不会非常严重,重新发起请求即可。

如果实际开发需求中,如果你的需求任务满足上述几种要求时,可以考虑使用udp去实现。

5. UDP安全性问题

  • 易受攻击性问题(微造身份):udp本身是无连接的,数据包在发送之前不需要建立连接,攻击者可以轻易伪造源地址发送UDP数据,进行IP欺骗攻击。
  • 反射攻击和放大攻击:
    • udp反射攻击: 攻击者伪造受害者的 IP 地址,向网络上的其他服务器发送大量UDP 请求。由于很多服务器会自动回复请求,这些回复数据将被发送到受害者的地址,从而导致大量流量集中到受害者一侧,形成 DDoS 攻击。
    • udp放大攻击:基于udp的应用层协议(DNS,NTP)返回的响应包含较大的数据包。攻击者利用伪造的 IP 地址发送小请求,目标服务器返回的大量数据包会直接被发送给受害者,放大了攻击效果。
  • udp未加密传输: 数据以明文形式传输,容易被窃听。中间人可以劫持udp流量,监听内容,进行功能流量重放等攻击手段。
  • 利用防火墙漏洞传输有害信息: UDP 是无连接的协议,某些情况下可以绕过防火墙的状态检测。攻击者可以通过精心设计的数据包,穿透防火墙,访问内部的网络资源。

6. 使用udp传输数据的系统就一定不可靠吗?

先说结论: 虽然udp本身不提供可靠性保证,但在实际应用中,通过应用层协议的设计,可以使得基于UDP的通信具备可靠性

常见例子:

  • DNS: 通过使用超时重传机制来保证查询的可靠性。
  • TFTP: 通过应用层的确认和重传机制来保证文件传输的可靠性。
  • RTP(用于传输音视频的协议): 通过结合RTCP提供的一些保障机制,例如 序列号和时间戳、丢包检测、RTCP反馈。来实现可靠传输。

7. 基于UDP的主机探活 python实现

实现原理:当向目标发送一个UDP数据包之后,目标是不会发回任何UDP数据包的。不过如果目标主机处于活跃状态,但是目标端口是关闭状态时,会返回一个ICMP数据包,这个包的含义是unreachable.如果目标主机处于不活跃状态,这时接收不到任务响应数据。

挑选目标主机的目标端口也是一个比较重要的步骤。一般思路是设置不太可能被开放端口,例如65535这种不常用的端口。我下面这个脚本通过随机数去生成一个目标端口,不一定适用所有情况,可以根据要扫描网段或机器的环境设置目标端口。

from scapy.layers.inet import *
from optparse import OptionParser
import nmap
import sys
"""
发送udp数据包
"""


def main():
    usage = "Usage: %prog -i <ip adress>"
    parse = OptionParser(usage=usage)
    # 获取网段地址
    parse.add_option("-i", "--ip", type="string", dest="IP", help="specify the IP address")
    options, args = parse.parse_args()
    # check
    if options.IP is None:
        parse.print_help()
        sys.exit(1)
    if "-" in options.IP:
        start = int(options.IP.split("-")[0].split(".")[3])
        end = int(options.IP.split("-")[1])
        ipPrefix = ".".join(options.IP.split(".")[:3])
        for i in range(start, end + 1):
            Scan(ipPrefix + "." + str(i))
    else:
        Scan(options.IP)


def sent_udp_message(address):
    ip = IP()
    udp = UDP()
    r = (ip / udp)
    r[IP].dst = address
    r[UDP].dport = random.randint(1024, 65535)
    a = sr1(r)
    a.display()

"""
通过UDP探测包探测主机存活
"""
def Scan(ip):
    dport = random.randint(1, 65535)
    try:
        packet = IP(dst=ip) / UDP(dport=dport)
        response = sr1(packet, timeout=10, verbose=0)
        if response:
            if int(response[IP].proto) == 1:
                print(ip + " is up")
            else:
                print(ip + " is down")
        else:
            print(ip + " is down")
    except Exception as e:
        print(e)

"""
 借助nmap实现udp探测
"""
def NmapScan(targetIp):
    nm = nmap.PortScanner()
    try:
        result = nm.scan(hosts=targetIp, arguments="-PU")
        state = result["scan"][targetIp]["status"]["state"]
        print("[{}] is [{}]".format(targetIp, state))
    except Exception as e:
        print(e)


if __name__ == "__main__":
    main()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/905367.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

使用 three.js 渲染个blender模型

首先需要一个扫描模型&#xff0c;工业上有专门的设备去采集模型的面然后通过建模软件去处理外表面贴图 我们这里取了一个ford汽车的发动机模型 为了让three.js能够使用&#xff0c;使用blender把模型保存为glb格式 为了让页面加载glb模型更快&#xff0c;需要对模型文件进行压…

jade 0919 | 提取自TVBox的直播盒子,频道丰富高清

jade电视直播app覆盖央视全频道和各大卫视&#xff0c;各地地方台也能一网打尽&#xff0c;随时随地看高清电视。各卫视台覆盖广泛&#xff0c;包括浙江电视台、湖南卫视、江苏卫视、东方卫视等全部卫视台&#xff0c;最新内容先一步掌握。拥有广东、北京、风云足球等热播体育频…

Oracle视频基础1.3.2练习

1.3.2 看 Oracle 实例是否启动 ps -ef | grep oracle备份已有的数据库文件到 old 文件夹&#xff0c;用 sample pfile 手动创建新的数据库文件 pfile mkdir old,mv * old,ls,cd old,cp init.ora …/initwilson.ora编辑 pfile&#xff0c;修改 db_name&#xff0c;db_block_siz…

“中信同业+”焕新升级 锚定数字金融新主线,做实金融“五篇大文章”

9月20日&#xff0c;“中信同业”升级发布会及生物多样性债券指数发布在京顺利举办&#xff0c;此次活动以“做强数字金融 服务实体经济”为主题&#xff0c;由中信金控指导&#xff0c;中信银行主办&#xff0c;中信各金融子公司联合承办。来自银行、证券、保险、基金等行业百…

重学SpringBoot3-Spring WebFlux之HttpHandler和HttpServer

更多SpringBoot3内容请关注我的专栏&#xff1a;《SpringBoot3》 期待您的点赞&#x1f44d;收藏⭐评论✍ 重学SpringBoot3-Spring WebFlux之HttpHandler和HttpServer 1. 什么是响应式编程&#xff1f;2. Project Reactor 概述3. HttpHandler概述3.1 HttpHandler是什么3.2 Http…

全桥PFC电路及MATLAB仿真

一、PFC电路原理概述 PFC全称“Power Factor Correction”&#xff08;功率因数校正&#xff09;&#xff0c;PFC电路即能对功率因数进行校正&#xff0c;或者说是能提高功率因数的电路。是开关电源中很常见的电路。功率因数是用来描述电力系统中有功功率&#xff08;实际使用…

【音视频 | ADPCM】音频编码ADPCM详细介绍及例子

&#x1f601;博客主页&#x1f601;&#xff1a;&#x1f680;https://blog.csdn.net/wkd_007&#x1f680; &#x1f911;博客内容&#x1f911;&#xff1a;&#x1f36d;嵌入式开发、Linux、C语言、C、数据结构、音视频&#x1f36d; &#x1f923;本文内容&#x1f923;&a…

python读取视频并转换成gif图片

1. 安装三方库 moviepy 将视频转换成gif&#xff0c;需要使用 moviepy库 确保已经安装了moviepy库 pip install moviepy2. 代码实现&#xff1a; from moviepy.editor import VideoFileClipmyclip VideoFileClip("video.mp4") myclip2 myclip.subclip(0, 10).re…

人工智能原理实验二:搜索方法

一、实验目的 本实验课程是计算机、智能、物联网等专业学生的一门专业课程&#xff0c;通过实验&#xff0c;帮助学生更好地掌握人工智能相关概念、技术、原理、应用等&#xff1b;通过实验提高学生编写实验报告、总结实验结果的能力&#xff1b;使学生对智能程序、智能算法等…

在Centos7.9服务器上使用LVM方式挂载磁盘以及Windows磁盘性能测试与Linux磁盘性能测试命令hdparm详细

一、在Centos7.9服务器上使用LVM方式挂载磁盘 在磁盘分区挂载之前&#xff0c;先使用lsblk命令查看磁盘信息&#xff0c;未分区挂载的磁盘sdb只有disk类型没有part类型。40G的硬盘sda已经分了两个区sda1、sda2。而sdb磁盘下并没有分区信息&#xff0c;说明还没有分区。磁盘分区…

dicom基础:乳腺影像方位信息介绍

目录 一、轴位 (CC, Craniocaudal) 二、侧位 (Lateral) 三、侧斜位 (MLO, Mediolateral Oblique) 四、不同的拍摄方位的乳腺影像展示 1、RCC&#xff08;Right Craniocaudal&#xff09; 2、LCC&#xff08;Left Craniocaudal&#xff09; 3、RMLO&#xff08;Right Medio…

uniapp 报错Invalid Host header

前言 在本地使用 nginx 反向代理 uniapp 时&#xff0c;出现错误 Invalid Host header 错误原因 因项目对 hostname 进行检查&#xff0c;发现 hostname 不是预期的&#xff0c;所以&#xff0c;报错 Invalid Host header 。 解决办法 这样做是处于安全考虑。但&#xff0…

10个领先的增强现实平台【AR】

增强现实 (AR) 被描述为一种通过计算机生成的内容增强现实世界的交互式体验。 使用软件、应用程序和硬件&#xff08;例如 AR 眼镜&#xff09;&#xff0c;AR 能够将数字内容叠加到现实环境和物体上。早在 2024 年&#xff0c;许多像 Apple 这样的公司就已进入 VR/AR 市场&am…

匹配——rabin_karp是怎么滚动的?

滚动散列函数 接前面用例公式滚动last_pos第三行第二行第一行证明后话接前面 匹配——散列法里面只说前一个字符乘以128再对72057594037927931求模,答案乘以128加后一个字符再对72057594037927931求模。对应代码: hash_s = (DOMAIN * hash_s + ord(s[i])) % PRIME用例 还是…

国产数据库之Vastbase海量数据库 G100

海量数据库Vastbase是基于openGauss内核开发的企业级关系型数据库。其语法和Oracle数据库很像&#xff0c;基本是从Oracle数据库迁移到海量数据库&#xff0c;以下简单介绍入门的使用 1、建库操作 地址&#xff1a;x.x.x.x root/Qa2021 安装路径&#xff1a;/home/vastbase 创…

进程、孤儿进程、僵尸进程、fork、wait简介

进程相关概念 程序和进程 程序&#xff1a;是指编译好的二进制文件&#xff0c;在磁盘上&#xff0c;占用磁盘空间, 是一个静态的概念. 进程&#xff1a;一个启动的程序&#xff0c; 进程占用的是系统资源&#xff0c;如&#xff1a;物理内存&#xff0c;CPU&#xff0c;终端等…

【万兴科技-注册_登录安全分析报告】

前言 由于网站注册入口容易被黑客攻击&#xff0c;存在如下安全问题&#xff1a; 暴力破解密码&#xff0c;造成用户信息泄露短信盗刷的安全问题&#xff0c;影响业务及导致用户投诉带来经济损失&#xff0c;尤其是后付费客户&#xff0c;风险巨大&#xff0c;造成亏损无底洞…

【笔记】数据结构与算法

参考链接&#xff1a;数据结构(全) 参考链接&#xff1a;数据结构与算法学习笔记 一些PPT的整理&#xff0c;思路很不错&#xff0c;主要是理解角度吧&#xff0c;自己干啃书的时候结合一下会比较不错 0.总论 1.数据 注&#xff1a;图是一种数据结构&#xff01;&#xff01;…

匿名内部类的理解

这个知识点困惑我很久&#xff0c;前几天面试的时候也问到了&#xff0c;没回答出来 首先先说说使用步骤吧 1.有一个接口&#xff0c;且含有一个抽象方法&#xff08;通常情况我们不会写abstract关键字&#xff0c;冗余的&#xff09; 2.然后有一个外部类&#xff08;Anonymo…

深入探索电能消耗数据:基于机器学习的分析与洞察

✅作者简介&#xff1a;2022年博客新星 第八。热爱国学的Java后端开发者&#xff0c;修心和技术同步精进。 &#x1f34e;个人主页&#xff1a;Java Fans的博客 &#x1f34a;个人信条&#xff1a;不迁怒&#xff0c;不贰过。小知识&#xff0c;大智慧。 &#x1f49e;当前专栏…