全桥PFC电路及MATLAB仿真

一、PFC电路原理概述

PFC全称“Power Factor Correction”(功率因数校正),PFC电路即能对功率因数进行校正,或者说是能提高功率因数的电路。是开关电源中很常见的电路。功率因数是用来描述电力系统中有功功率(实际使用的功率)与视在功率(包括有功功率和无功功率)的比例。提高功率因数可以减少电能损耗,提高系统的效率。

1.PFC电路的基本概念

1.1.有功功率和无功功率

  1. 有功功率(P):也称为实际功率,是电路中真正被用来做功的电能。单位是瓦特(W)。
  2. 无功功率(Q):是电路中用于建立电场或磁场的功率,它并不直接做功,而是在电感和电容元件中来回交换。单位是乏(VAR,Volt-Ampere Reactive)。它本身是不会消耗能量的,但影响系统的效率。(电感和电容储存了多少能量,就会释放出多少能量,有一部分能量在电感电容中循环(相当于不断充放电)。这部分能量由于没有被消耗掉,所以就可以理解为没有对外做功,这部分能量的功率我们就称之为无功功率。)
  3. 视在功率(S):是电路中总的输入功率,包括有功功率和无功功率。单位是伏安(VA)。

1.2.功率因数

  1. 功率因数(PF) = 有功功率/ 视在功率。其中,ϕ是电压和电流之间的相位角。功率因数的值介于0到1之间,值越高,表示电能使用效率越高(相位角越小,功率因数也越好,相位角为0的时候,PF就为1)。
  2. PF=P/S=cos\varphi

  3. 功率因数校正(PFC)的一个主要目标是使电流波形与电压波形一致,尽量使两者在相位上对齐。
  4. 理想的功率因数为1,表示所有的电力都被有效利用。
  5. 对于纯阻性负载来说,功率P=UI,但是对于非纯阻性负载来说,电路中是带有感性负载或者容性负载,P不等于U✖I,U✖I的结果是S视在功率。

1.3.视在功率、有功功率、无功功率三者关系(电流为正弦波):

P=S*cos\varphi

Q=S*sin\varphi

PF=P/S=cos\varphi

  1. Φ就是功率因数角,电压和电流之间的相位角,而且也是负载的阻抗角。
  2. 当负载为纯阻性负载,输出电压、电流的相位相同。
  3. 当负载为纯容性负载,电流相位超前电压90°,此时的功率因数为0,无功功率等于视在功率。
  4. 当负载为纯感性负载,电流相位滞后电压90°,此时的功率因数为0,无功功率等于视在功率。

1.4.对于电流不是正弦波的情况

PF=cos\varphi /\sqrt{1-THD^{2}}

THD=\sqrt{I\tfrac{2}{2}+I\tfrac{2}{3}+...+I\tfrac{2}{n}}/I_{1}

THD为电流总谐波畸变,I1表示1次谐波电流大小、In表示n次谐波电流大小。谐波畸变也会对电网造成影响,包括RFI、EMI。

1.5.功率因数的影响

  • 低功率因数的影响
    • 电能浪费:功率因数低意味着无功功率较高,电力系统需要额外的容量来输送无功功率,增加了电力传输和变压器的负荷。
    • 设备损耗增加:低功率因数会导致电力设备中的电流增大,从而增加电缆和设备的发热和损耗。
    • 电压下降:低功率因数会使线路上的电压损失增大(电流增大,电压就会减小),导致电力系统中的电压不稳定。
  • 高功率因数的优势
    • 提高电能利用率:高功率因数意味着电能几乎全部用于做功,减少了电力损耗。
    • 减小设备容量要求:由于无功功率的减少,电力系统的容量需求降低,设备的体积和成本都可以减少。
    • 降低电费:许多电力公司会对功率因数低的用户收取附加费用,因此提高功率因数可以降低电费支出。

2. PFC电路的类型

2.1 被动PFC

  • 基本原理:无源PFC其实就是通过对无功功率进行补偿来提高功率因数。容性负载串联电感,感性负载并联电容都能对无功功率进行补偿。
  • 优点:结构简单、成本低。
  • 缺点:效果有限,无法适应变化的负载条件,通常功率因数提高到0.7-0.8左右。

2.2 主动PFC

  • 基本原理:使用开关模式电源(SMPS)技术,对输入电压电流采样,控制开关管的通断,让输入电流跟随输入电压变化,实现功率因数的校正,提高功率因数。
  • 常见拓扑结构
    • Boost PFC电路:最常用的主动PFC方案,也是下边实验的PFC方案。输入电压通过Boost转换器提升,输出电压高于输入电压,同时实现功率因数校正。
    • Buck PFC电路:用于低输入电压的场合。
    • Buck-Boost PFC电路:适用于输入电压可能高于或低于输出电压的情况。

3. Boost PFC电路工作原理

BoostPFC电路图如下所示:

  1. 输入电流控制:通过控制开关元件(如MOSFET)的导通与关断,调节电流波形,使其跟随输入电压的波形。
  2. 电感储能:电感在开关导通时储存能量,在开关关断时释放能量,提供高于输入电压的输出电压。
  3. 电流反馈:使用电流传感器和反馈控制器(如PI控制器),实时监测输入电流,调整开关的占空比,以确保电流波形与输入电压同相。
  4. 输出滤波:输出端通常会加上电容器,平滑输出电压,减少波动。

4. PFC电路的目的

  • 提高功率因数,使其接近1,降低电网的无功功率损耗。
  • 减少谐波污染,提高电源质量。
  • 满足国家和地区对电源设备的功率因数标准。

5. 设计考虑

  • 控制策略:选择合适的控制方法(如PID、模糊控制等)来优化电流波形(下边主要用到的是PI控制)。
  • 开关频率:选择合适的开关频率,以确保系统效率和EMI(电磁干扰)符合标准。
  • 热管理:由于PFC电路中会有损耗,需合理设计散热方案。
  • 谐波抑制:确保电路设计能够满足国际标准(如IEEE 802.3、IEC 61000等)的谐波要求。

 二、PFC-Boost电路双闭环控制逻辑

双闭环控制策略是PFC控制中的一种经典方案,它利用了电压外环电流内环两个反馈回路来实现稳定的输出电压和高质量的输入电流波形。

如下图是Boost电路的双闭环控制,基本逻辑就是收集电路的输出电压与参考电压对比作出误差,误差经过PI调节后输出一参考电流,电路的平均电流与这个参考电流对比作出误差,误差经过PI调节后生成PWM的占空比控制MOS管。

1. PFC双闭环控制概述

PFC-Boost电路双闭环控制系统由电压环(外环)电流环(内环)组成,分别控制输出电压和输入电流,但是与Boost电路的双闭环控制有所不同,PFC-Boost电路的输入电压是一个交流电,上述Boost电路的输入电压是直流电压。

  • 电压环(Voltage Loop):监测输出电压并与参考电压进行比较作出误差,误差信号通过电压环的补偿器(PI控制器)生成一个中间系数(没有实际意义),将这个中间系数与输入电压相乘,计算出电流基准值(电流命令,因为电压是正弦的,所以电流基准值也是正弦变化的),这个电流基准值就是期望的电流波形。

  • 电流环(Current Loop):控制输入电流的波形,使其与输入电压同相并保持正弦波形,从而达到功率因数校正的目的。电流环的基准来自电压环的输出,其目标是确保输入电流跟踪参考电流。我们将实际的输入电流与期望的电流作差,计算出电流误差值,然后经过电流环调节(使用PI控制器进行调节),计算出合适的占空比,再经过PWM发波器,输出占空比变化的PWM波,从而控制MOS的开关,就能实现电流跟随电压了。

2. PFC双闭环的控制逻辑

PFC双闭环的核心思想是,电压环负责维持稳定的输出电压,而电流环则负责调节输入电流的形状。具体的控制逻辑如下:

2.1 电压环(外环)

  • 功能:电压环的主要目的是保持直流侧输出电压(通常是一个稳定的直流电压,如400V)在设定值附近,避免由于负载变化而导致输出电压的波动。
  • 控制流程
    1. 电压检测:测量输出电压 Vou 并与参考电压 Vreff​(目标输出电压)进行比较。
    2. 误差计算:计算输出电压与目标电压之间的误差 Verror=Vref​−Vout​。
    3. PI调节器:将误差输入到电压环的PI调节器,通过积分和比例控制将误差信号转化为一个系数,系数与输入电压相乘作为电流基准信号 Iref​(电流环的输入)。
    电压环的输出不是直接控制开关管的占空比,而是产生一个电流基准信号 Ire,作为电流环的目标。

2.2 电流环(内环)

  • 功能:电流环的主要目的是使输入电流 Iin​ 跟踪参考电流 Iref,从而确保输入电流与输入电压同相,并呈现正弦波形,达到功率因数校正的目的。
  • 控制流程
    1. 电流检测:检测输入电流 Iin,并将其与参考电流 Iref​ 进行比较。
    2. 误差计算:计算输入电流与参考电流之间的误差 Ierror=Iref​−Iin​。
    3. PI调节器:将电流误差输入到电流环的PI调节器,生成控制信号,用于调节Boost PFC电路中的开关管的占空比 D。
    通过调整占空比,改变电感中的能量存储和释放,以调节输入电流,使其与参考电流 Iref保持一致。

3. PFC双闭环控制的关键点

3.1 电流环的设计

电流环作为内环,其响应速度比电压环要快,因为它直接调节Boost电感中的电流,且需要确保输入电流快速跟踪参考电流。因此,电流环通常使用高带宽的PI控制器,能够快速响应电流误差,并产生准确的占空比。

3.2 电压环的设计

电压环的响应速度通常较慢,因为输出电压的变化较为缓慢,主要是由于大电容滤波的存在。为了维持输出电压稳定,电压环需要能够处理由负载变化引起的慢速扰动。电压环的PI控制器设计时带宽较低,能够在较大的时间常数下产生平稳的电流基准信号 Iref。

3.3 谐波和功率因数控制

通过电流环控制输入电流的形状,使其与输入电压保持相同的相位和波形,减少谐波失真,提高功率因数。当电流环控制得当时,输入电流几乎是一个正弦波,且与输入电压同相,从而实现功率因数校正。

4. PFC双闭环控制的优缺点

4.1 优点

  • 高功率因数:通过电流环控制,输入电流能够很好地跟踪输入电压的波形,功率因数接近1。
  • 稳定的输出电压:电压环的外环能够有效调节输出电压,使其保持稳定,适应负载变化。
  • 快速动态响应:电流环能够快速调整输入电流,确保输入电流的快速跟踪,改善系统的动态响应。

4.2 缺点

  • 设计复杂度高:双闭环控制需要对电流环和电压环分别设计控制器,并确保两者之间的协调配合,设计和调试复杂度较高。
  • 成本增加:由于需要额外的电流和电压检测电路,以及更复杂的控制逻辑,系统的实现成本有所增加。

三、PFC-Boost电路双闭环MATLAB仿真

PFC-Boost电路图如下:

1.MATLAB仿真模型

1.1.仿真模型图

相比较前边Boost升压电路,PFC电路的输入换成了交流电和由四个二极管组成的整流电路,在电压外环控制中我们的目标电流基准值需要和输入电压的绝对值相乘,因为我们需要一个和输入电压同相位的输入电流。(在这里的PI参数随便设定的,因此到达稳态后的时间比较长)

1.2.器件参数设置

输入电压:

限流电阻:

电容:

四个二极管:

1.3.实验结果

输出电压稳态后在380V左右。

输入电压和输入电流基本同相位。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/905358.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【音视频 | ADPCM】音频编码ADPCM详细介绍及例子

😁博客主页😁:🚀https://blog.csdn.net/wkd_007🚀 🤑博客内容🤑:🍭嵌入式开发、Linux、C语言、C、数据结构、音视频🍭 🤣本文内容🤣&a…

python读取视频并转换成gif图片

1. 安装三方库 moviepy 将视频转换成gif,需要使用 moviepy库 确保已经安装了moviepy库 pip install moviepy2. 代码实现: from moviepy.editor import VideoFileClipmyclip VideoFileClip("video.mp4") myclip2 myclip.subclip(0, 10).re…

人工智能原理实验二:搜索方法

一、实验目的 本实验课程是计算机、智能、物联网等专业学生的一门专业课程,通过实验,帮助学生更好地掌握人工智能相关概念、技术、原理、应用等;通过实验提高学生编写实验报告、总结实验结果的能力;使学生对智能程序、智能算法等…

在Centos7.9服务器上使用LVM方式挂载磁盘以及Windows磁盘性能测试与Linux磁盘性能测试命令hdparm详细

一、在Centos7.9服务器上使用LVM方式挂载磁盘 在磁盘分区挂载之前,先使用lsblk命令查看磁盘信息,未分区挂载的磁盘sdb只有disk类型没有part类型。40G的硬盘sda已经分了两个区sda1、sda2。而sdb磁盘下并没有分区信息,说明还没有分区。磁盘分区…

dicom基础:乳腺影像方位信息介绍

目录 一、轴位 (CC, Craniocaudal) 二、侧位 (Lateral) 三、侧斜位 (MLO, Mediolateral Oblique) 四、不同的拍摄方位的乳腺影像展示 1、RCC(Right Craniocaudal) 2、LCC(Left Craniocaudal) 3、RMLO(Right Medio…

uniapp 报错Invalid Host header

前言 在本地使用 nginx 反向代理 uniapp 时,出现错误 Invalid Host header 错误原因 因项目对 hostname 进行检查,发现 hostname 不是预期的,所以,报错 Invalid Host header 。 解决办法 这样做是处于安全考虑。但&#xff0…

10个领先的增强现实平台【AR】

增强现实 (AR) 被描述为一种通过计算机生成的内容增强现实世界的交互式体验。 使用软件、应用程序和硬件(例如 AR 眼镜),AR 能够将数字内容叠加到现实环境和物体上。早在 2024 年,许多像 Apple 这样的公司就已进入 VR/AR 市场&am…

匹配——rabin_karp是怎么滚动的?

滚动散列函数 接前面用例公式滚动last_pos第三行第二行第一行证明后话接前面 匹配——散列法里面只说前一个字符乘以128再对72057594037927931求模,答案乘以128加后一个字符再对72057594037927931求模。对应代码: hash_s = (DOMAIN * hash_s + ord(s[i])) % PRIME用例 还是…

国产数据库之Vastbase海量数据库 G100

海量数据库Vastbase是基于openGauss内核开发的企业级关系型数据库。其语法和Oracle数据库很像,基本是从Oracle数据库迁移到海量数据库,以下简单介绍入门的使用 1、建库操作 地址:x.x.x.x root/Qa2021 安装路径:/home/vastbase 创…

进程、孤儿进程、僵尸进程、fork、wait简介

进程相关概念 程序和进程 程序:是指编译好的二进制文件,在磁盘上,占用磁盘空间, 是一个静态的概念. 进程:一个启动的程序, 进程占用的是系统资源,如:物理内存,CPU,终端等…

【万兴科技-注册_登录安全分析报告】

前言 由于网站注册入口容易被黑客攻击,存在如下安全问题: 暴力破解密码,造成用户信息泄露短信盗刷的安全问题,影响业务及导致用户投诉带来经济损失,尤其是后付费客户,风险巨大,造成亏损无底洞…

【笔记】数据结构与算法

参考链接:数据结构(全) 参考链接:数据结构与算法学习笔记 一些PPT的整理,思路很不错,主要是理解角度吧,自己干啃书的时候结合一下会比较不错 0.总论 1.数据 注:图是一种数据结构!!…

匿名内部类的理解

这个知识点困惑我很久,前几天面试的时候也问到了,没回答出来 首先先说说使用步骤吧 1.有一个接口,且含有一个抽象方法(通常情况我们不会写abstract关键字,冗余的) 2.然后有一个外部类(Anonymo…

深入探索电能消耗数据:基于机器学习的分析与洞察

✅作者简介:2022年博客新星 第八。热爱国学的Java后端开发者,修心和技术同步精进。 🍎个人主页:Java Fans的博客 🍊个人信条:不迁怒,不贰过。小知识,大智慧。 💞当前专栏…

架构的本质之 MVC 架构

前言 程序员习惯的编程方式就是三步曲。 所以,为了不至于让一个类撑到爆💥,需要把黄色的对象、绿色的方法、红色的接口,都分配到不同的包结构下。这就是你编码人生中所接触到的第一个解耦操作。 分层框架 MVC 是一种非常常见且常…

突破挑战,创新前行 | 生信科技SOLIDWORKS 2025新品发布会·合肥站精彩回顾

2024年10月18日,由生信科技举办的首场SOLIDWORKS 2025新产品发布会在安徽合肥圆满落幕。现场邀请到制造业的专家学者们一同感受SOLIDWORKS 2025最新功能,探索制造业数字化转型之路。 合肥站活动日,由生信科技副总经理徐建开场。他以智造无界&…

鸿蒙HarmonyOS应用开发者(基础+高级)认证

文章目录 鸿蒙HarmonyOS应用开发者(基础高级)认证👉1.HarmonyOS认证介绍1.1、HarmonyOS发展历程1.2、HarmonyOS NEXT 开发预览版1.3、ArkTS语言开发鸿蒙应用1.4、HarmonyOS应用开发者基础认证的核心内容1.5、HarmonyOS应用开发者高级认证的核心内容1.6、HarmonyOS应…

三菱变频器A800\F800\D700E700\CS80等系列变频器选件一览

配备了丰富的选配件,可以提升变频器的性能、增加功能、支持更多的安装方式等。 变频器和外围设备 选件表

精准提炼 | SOLIDWORKS 2025:工程图与钣金焊件新功能

SOLIDWORKS 每年的更新都致力于提升用户的设计效率与体验,SOLIDWORKS 2025 同样带来了众多改进,下面让我们快速了解一下在SOLIDWORKS 2025 工程图与钣金焊件方面的新功能。 工程图相关 一、表面粗糙度符号标注 新版本现在将符合更新 ISO 标准 (ISO 21…

SpringBoot核心框架之AOP详解

SpringBoot核心框架之AOP详解 一、AOP基础 1.1 AOP概述 AOP:Aspect Oriented Programming(面向切面编程,面向方面编程),其实就是面向特定方法编程。 场景:项目部分功能运行较慢,定位执行耗时…