数学建模(四)整数规划—匈牙利算法

目录

一、0-1型整数规划问题

1.1 案例

1.2 指派问题的标准形式

2.2 非标准形式的指派问题

二、指派问题的匈牙利解法 

2.1 匈牙利解法的一般步骤

2.2 匈牙利解法的实例

2.3 代码实现


一、0-1型整数规划问题

1.1 案例

投资问题:

有600万元投资5个项目,收益如表,求利润最大的方案?

设置决策变量:

模型:

指派问题:

甲乙丙丁四个人,ABCD四项工作,要求每人只能做一项工作,每项工作只由一人完成,问如何指派总时间最短?

设置决策变量:

模型:

约束条件:

1.2 指派问题的标准形式

标准的指派问题

有n个人和n项工作,已知第i个人做第j项工作的代价为cj(i,j=1,…..,n),要求每项工作只能交与其中一人完成,每个人只能完成其中一项工作,问如何分配可使总代价最少?

指派问题标准求解形式

(1) 指派问题的系数矩阵

(2)决策变量的设置

(3)指派问题的解矩阵

 指派问题的可行解中,每行每列有且仅有一个1。

(4)标准模型

2.2 非标准形式的指派问题

(1)最大化指派问题

例如:求利润,只需找出最大元素,令最大元素减去所有元素,构建一个新的系数矩阵即可。

C=(c_{ij})_{n \times n} 中最大元素为m,令 B=(b_{ij})_{n \times n}=(m-c_{ij})_{n \times n}

(2)人数和工作数不等

人少工作多:添加虚拟的 “人”,代价都为0

人多工作少:添加虚拟的工作,代价都为0

(3)一个人可做多件工作
该人可化为几个相同的 “人”。

(4)某工作一定不能由某人做
该人做该工作的相应代价取足够大M。例如,将某人做某工作代价设为负值。

二、指派问题的匈牙利解法 

匈牙利法是一种求解指派问题的简便解法,它利用了矩阵中0元素的定理。若从系数矩阵的一行(列)各元素中分别减去该行(列)的最小元素,得到新矩阵。以新矩阵为系数矩阵求得的最优解和用原矩阵求得的最优解相同

2.1 匈牙利解法的一般步骤

第一步变换指派问题的系数(也称效率)矩阵(c_{ij})为(b_{ij}),使在(b_{ij})的各行各列中都出现0元素,即

  • (1) 从矩阵(c_{ij})的每行元素都减去该行的最小元素
  • (2) 再从所得新系数矩阵的每列元素中减去该列的最小元素

第二步:进行试指派,以寻求最优解。

在(b_{ij})中找尽可能多的独立0元素(即行和列中只有这一个0元素),若能找出n个独立0元素,就以这n个独立0元素对应解矩阵(x_{ij})中的元素为1,其余为0,这就得到最优解。找独立0元素,常用的步骤为:

  • (1) 从只有一个0元素的行开始,给这个0元素加圈,记作\circledcirc,然后划去\circledcirc所在列的其它0元素,记作。这表示这列所代表的任务已指派完,不必再考虑别人了。
  • (2) 给只有一个0元素的列中的0元素加圈,记作\circledcirc,然后划去\circledcirc所在行的0元素,记作
  • (3) 反复进行(1),(2)两步,直到尽可能多的0元素都被圈出和划掉为止。
  • (4) 若仍有没有划圈的0元素,且同行(列)的0元素至少有两个,则从剩有0元素最少的行(列)开始,比较这行各0元素所在列中0元素的数目,选择0元素少的那列的这个0元素加圈。然后划掉同行同列的其它0元素。可反复进行,直到所有0元素都已圈出和划掉为止
  • (5) 若\circledcirc元素的数目m等于矩阵的阶数n,那么这指派问题的最优解已得到。若m<n,则转入下一步。

第三步:作最少的直线覆盖所有0元素。

  • (1) 对没有\circledcirc打√号;
  • (2) 对已打√号的行中所有含元素的打√号。
  • (3) 再对打有√号的列中含\circledcirc元素的打√号。
  • (4) 重复(2),(3)直到得不出新的打√号的行、列为止。
  • (5) 对没有打√号的行画横线,有打√号的列画纵线,这就得到覆盖所有0元素的最少直线数 ll 应等于m,转第四步。若不相等,说明试指派过程有误,回到第二步(4)。

第四步:变换矩阵(b_{ij})以增加0元素。

在没有被直线覆盖的所有元素中找出最小元素,然后打√各行都减去这最小元素。打√各列都加上这最小元素(以保证系数矩阵中不出现负元素)。新系数矩阵的最优解和原问题仍相同。转回第二步,直到找出最优解。

2.2 匈牙利解法的实例

 甲乙丙丁四人要完成四项工作A、B、C、D,每人只能完成一项工作,要求完成总时间最短。

匈牙利解法

第一步:减去最小值。

第二步:加圈和划掉,比较圈数是否等于矩阵的阶数。

等于,则输出最优值, 否则,转到第三步重整矩阵。

2.3 代码实现

c=[3 8 2 10 3;8 7 2 9 7;6 4 2 7 5; 8 4 2 3 5;9 10 6 9 10];%系数矩阵
 
c=c(:);    %把矩阵c转化为向量 

a=zeros(10,25);
 
for i=1:5   % 实现循环运算
a(i,(i-1)*5+1:5*i)=1; 
a(5+i,i:5:25)=1;
end         % 此循环把指派问题转换为线性规划问题
 
b=ones(10,1); 
 
[x,y]=linprog(c,[],[],a,b,zeros(25,1),ones(25,1));

X=reshape(x,5,5)

opt=y

输出

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/90174.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Hbase分布式安装

一、环境准备 启动zookeeper 启动hdfs 二、安装 上传安装包 1、解压 tar -zxf hbase-2.2.2-bin.tar.gz -C /opt/installs/2、更名 mv hbase-2.2.2/ hbase3、配置环境变量 [roothadoop11 conf]# vim /etc/profile export HBASE_HOME/opt/installs/hbase export PATH$PATH:$…

构建高性能云原生大数据处理平台:融合人工智能优化数据分析流程

文章目录 架构要点优势与应用案例研究&#xff1a;基于云原生大数据平台的智能营销分析未来展望&#xff1a;大数据与人工智能的融合结论 &#x1f388;个人主页&#xff1a;程序员 小侯 &#x1f390;CSDN新晋作者 &#x1f389;欢迎 &#x1f44d;点赞✍评论⭐收藏 ✨收录专栏…

某网站DES加密逆向分析实战

文章目录 一、抓包分析二、加密分析一、重写加密 一、抓包分析 分析站点&#xff1a; aHR0cDovL2VpcC5jaGFuZmluZS5jb20v 首先我们提交一下登陆信息&#xff1a; 搜索j_password查看加密函数: 把上图搜索到的encryptPassword函数拿出来分析一下&#xff1a; function encryptP…

免费的png打包plist工具CppTextu,一款把若干资源图片拼接为一张大图的免费工具

经常做游戏打包贴图的都知道&#xff0c;要把图片打包为一张或多张大图&#xff0c;要使用打包工具TexturePacker。 TexturePacker官方版可以直接导入PSD、SWF、PNG、BMP等常见的图片格式&#xff0c;主要用于网页、游戏和动画的制作&#xff0c;它可以将多个小图片汇聚成一个…

springboot服务注册到Eureka,端口总是默认8080,自己配置端口不生效

这段时间接手了一个公司的老项目&#xff0c;用的是SpringCloud&#xff0c;在我用的时候突然发现有一个服务&#xff0c;注册到Eureka后&#xff0c;界面显示的端口和实际Ribbon调用的实例端口是不一致的&#xff0c;后来我自己写了个端口获取了一下所有的实例信息&#xff0c…

C语言 数字在升序数组中出现的次数

目录 1.题目描述 2.题目分析 2.1遍历数组方法 2.2二分查找方法 2.3代码示例 数字在升序数组中出现的次数 这道题可以用遍历数组和二分查找来处理 1.题目描述 2.题目分析 题目中有一个关键信息&#xff0c;非降序数组&#xff0c;我们可以使用if语句来处理这个问题 if(…

C#矩阵XY排序

矩阵XY快速排序 using MyVision.Script.Method;public class MyScript : ScriptMethods {//struct MOTIONPOSXY_S{public double Pos_x;public double Pos_y;};//脚本执行该方法public bool Process(){//try{//脚本代码写在下方 List<double> PointX GetDoubleList(&qu…

二分查找逻辑

目录 二分查找 查找逻辑 题目练习 题目描述 代码示例 总结 二分查找 二分查找是我们经常使用的一种算法&#xff0c;他的逻辑是 在升序或者降序且无重复元素的数组中&#xff0c;比较目标值和数组中间值的方法&#xff0c;每次缩小一半的搜索范围&#xff0c;相比遍历可…

ssm+vue农家乐信息平台源码和论文

ssmvue农家乐信息平台源码和论文066 开发工具&#xff1a;idea 数据库mysql5.7 数据库链接工具&#xff1a;navcat,小海豚等 技术&#xff1a;ssm 1、研究现状 国外&#xff0c;农家乐都被作为潜在的发展农村经济&#xff0c;增加农民收入的重要手段&#xff0c;让农户广…

Unity Alembic闪烁问题

最近在做项目时&#xff0c;发现Clo3D导出的服装abc动画&#xff0c;导入到Unity中后(已提前导入Alembic插件)&#xff0c;运行时屏幕会闪烁(变黑)。 经过几轮测试&#xff0c;发现是切线的问题。解决办法很简单。将abc文件上的Tangents属性值改为None即可。

matlab-对数据集加噪声并实现tsne可视化

matlab-对数据集加噪声并实现tsne可视化 最近才知道&#xff0c;原来可以不用模型&#xff0c;也能实现对数据集数据的可视化。 **一、**以COIL-100数据集为例子。 问题&#xff1a; 前提&#xff1a;首先对COIL-100数据集根据角度0-175和180-255&#xff0c;分别划分成C1,C…

时序分解 | MATLAB实现基于SVD奇异值分解的信号分解分量可视化

时序分解 | MATLAB实现基于SVD奇异值分解的信号分解分量可视化 目录 时序分解 | MATLAB实现基于SVD奇异值分解的信号分解分量可视化效果一览基本介绍程序设计参考资料 效果一览 基本介绍 SVD分解重构算法&#xff0c;MATLAB程序&#xff0c;奇异值分解 (Singular Value Decompo…

c语言调用mciSendString播放音乐

如下所示&#xff0c;这是一个使用c语言调用系统方法mciSendString()&#xff0c;让系统播放音乐的示例&#xff1a; baihuaxiang 代码&#xff1a; #include <graphics.h> #include <Windows.h> #include <mmsystem.h>#pragma comment(lib,"WINMM.LIB…

数据结构——线性数据结构(数组,链表,栈,队列)

文章目录 1. 数组2. 链表2.1. 链表简介2.2. 链表分类2.2.1. 单链表2.2.2. 循环链表2.2.3. 双向链表2.2.4. 双向循环链表 2.3. 应用场景2.4. 数组 vs 链表 3. 栈3.1. 栈简介3.2. 栈的常见应用常见应用场景3.2.1. 实现浏览器的回退和前进功能3.2.2. 检查符号是否成对出现3.2.3. 反…

3D模型转换工具HOOPS Exchange助力打造虚拟现实应用程序

挑战&#xff1a; 支持使用各种 CAD 系统和 CAD 文件格式的客户群向可视化硬件提供快速、准确的数据加载提供对详细模型信息的访问&#xff0c;同时确保高帧率性能 解决方案&#xff1a; HOOPS Exchange领先的CAD数据转换工具包 结果&#xff1a; 确保支持来自领先工程软件…

边缘计算网关是如何提高物联网的效率的?

随着物联网的持续发展&#xff0c;物联网应用的丰富和规模的扩大&#xff0c;带来了海量的数据处理、传输和计算需求。 传统的“数据中央处理”模式越来越难以适应物联网的扩展速度&#xff0c;在这一趋势下&#xff0c;边缘计算在物联网系统的部署运营中就发挥出了显著的增效…

docker在阿里云上的镜像仓库管理

目录 一.登录进入阿里云网站&#xff0c;点击个人实例进行创建 二.创建仓库&#xff0c;填写相关信息 三.在访问凭证中设置固定密码用于登录&#xff0c;登录时用户名是使用你注册阿里云的账号名称&#xff0c;密码使用设置的固定密码 四.为镜像打标签并推送到仓库 五.拉取…

什么是Sui Kiosk,它可以做什么,如何赋能创作者?

创作者和IP持有者需要一些工具帮助他们在区块链上实现其商业模式。Sui Kiosk作为Sui上的一种原语可以满足这种需求&#xff0c;为创作者提供动态选项&#xff0c;使他们能够在任何交易场景中设置完成交易的条件。 本文将向您介绍为什么要在SuiFrens中使用Sui Kiosk&#xff0c…

分布式 - 服务器Nginx:一小时入门系列之 HTTPS协议配置

文章目录 1. HTTPS 协议2. 生成 SSL 证书和私钥文件3. 配置 SSL 证书和私钥文件4. HTTPS 协议优化 1. HTTPS 协议 HTTPS 是一种通过计算机网络进行安全通信的协议。它是HTTP的安全版本&#xff0c;通过使用 SSL 或 TLS 协议来加密和保护数据传输。HTTPS的主要目的是确保在客户…

渗透测试是什么?怎么做?

渗透测试报告 一、什么是渗透测试&#xff1f; 渗透测试是可以帮助用户对目前自己的网络、系统、应用的缺陷有相对直观的认识和了解。渗透测试尽可能地以黑客视角对用户网络安全性进行检查&#xff0c;对目标网络、系统和应用的安全性作深入的探测&#xff0c;发现系统最脆弱的…