matlab-对数据集加噪声并实现tsne可视化

matlab-对数据集加噪声并实现tsne可视化

最近才知道,原来可以不用模型,也能实现对数据集数据的可视化。

**一、**以COIL-100数据集为例子。

问题:
前提:首先对COIL-100数据集根据角度0°-175°和180°-255°,分别划分成C1,C2两个子数据集。
目的:
①实现C1-C2的tsne可视化;
②对COIL-100数据集添加遮挡物,实现C1-C2的tsne可视化。
平台:
matlabR2019b 以及 Pycharm2022

**

二、解决方法

**
(1)首先获取得到我们的COIL-100的数据集,以及划分好的C1,C2数据集:
在这里插入图片描述

(2)----------对数据集图片添加遮挡物----------
分别对COIL-100-1和COIL-100-2数据集添加遮挡物
我借鉴了这个博客数据增强-在图片中添加遮挡物
这个博客是对数据集添加不规则的五边形,我自己改成了:添加长方体遮挡物,且位置随机,python代码如下:

import random

import itertools

import os
import PIL.Image as Image
import PIL.ImageDraw as ImageDraw

# 原始图片的存放位置
PATH = 'C:/Users/lenovo/Documents/MATLAB/COIL-Augment-tsne/data/COIL-100/'
# 新生成的图片的保存位置
SAVE_PATH= 'C:/Users/lenovo/Documents/MATLAB/COIL-Augment-tsne/data/COIL-100-noise-10x10/'
# 要在图片上生成几边形的物体,N=5代表五边形
N = 4


def drawObs(path, savePath, n):

    for file in os.listdir(path):
        if not file.lower().endswith(('.bmp', '.dib', '.png', '.jpg', '.jpeg', '.pbm', '.pgm', '.ppm', '.tif', '.tiff')):
            continue
        img = Image.open(path + file)
        (x, y) = img.size
        random_list = list(itertools.product(range(1, x), range(1, y)))
        points = random.sample(random_list, n)

        draw = ImageDraw.Draw(img)
        x = random.randint(0, 255)
        #ImageDraw.ImageDraw.polygon(xy=points, fill=(x1, x2, x3), self=draw)
        draw.rectangle((x,x,x+20,x+10),fill=(0,0,0))
        img.save(savePath + 'rand' + file)
        print(file)

if __name__ == '__main__':
    drawObs(PATH, SAVE_PATH, N)



于是,我们得到 添加了随机遮挡物的C1和C2数据集:COIL-100-agument-1和COIL-100-agument-2.
在这里插入图片描述

(3)----------数据集转换为.mat文件----------
分别将COIL-100-1, COIL-100-2, COIL-100-agument-1 和 COIL-100-agument-2,四个数据集转换成.mat文件。
.png向.mat文件转换的代码,我借鉴了这个博客将COIL数据集转换成.mat文件

clear
clc
path = 'D:\COIL\coil-100\';     %源数据集路径
save_path = 'D:\COIL\';     %处理之后保存的路径
file = dir([path,'*.png']);     %列出源路径下所有.png文件的信息:name date bytes...

COIL = [];
Label = [];
for i = 1:length(file)      %源路径下png文件的个数
    %%
    %%对图片本身数据做处理
    image0 = imread([path,file(i).name]);       %读取某一张图片
    str = file(i).name;     %图片名保存为str
    image1 = rgb2gray(image0);      %将彩图转换为灰度图像
    image2 = im2double(image1);     %将图片中unit8转换为double
    [a,b] = size(image2);       %a为图片行数 b为图片列数
    image3 = reshape(image2,1,a*b);     %将a*b的图片转换为1行
    COIL = [COIL;image3];       %每一张图片都加载在上一张图片的下一行
    fprintf('%d th starting...\n',i);       %记录程序运行过程
    %%
    %%对图片标签做处理 图片名为‘obj(类标签)__(拍摄角度).png’
    %主要提取类标签
    LabelStart = strfind(str,'j');      %找到图片名‘j’的位置(类标签前)
    LabelEnd = strfind(str,'_');        %找到图片名‘__’的位置(类标签后)
    label_temp = str2double(str(LabelStart+1:LabelEnd(1,1)-1));     %提取出图片类标签
    Label = [Label;label_temp];     %每个类标签按顺序排排坐
end

save savepath COIL Label

注意:
①保存的COIL-100-1 和 COIL-100-augment-1 图片保存为X_src,图片标签保存为Y_src,即上述代码中的COILLabel
②保存的COIL-100-2 和 COIL-100-augment-2 图片保存为X_tar,图片标签保存为Y_tar,即上述代码中的COILLabel

即生成的.mat文件如下图所示:
在这里插入图片描述
在这里插入图片描述

(4)最后分别将COIL-100-1和COIL-100-2可视化;以及COIL-100-agument-1 和 COIL-100-agument-2可视化。
matla可视化代码如下:

%%% tsne visulization
clc;
clear;
addpath('tSNE_matlab');

savefile1 = 'C:\Users\lenovo\Documents\MATLAB\COIL-Augment-tsne\data\COIL-100-agumnet-1.mat';
savefile2 = 'C:\Users\lenovo\Documents\MATLAB\COIL-Augment-tsne\data\COIL-100-agumnet-2.mat';

load(savefile1);
load(savefile2);
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Xs=X_src;
Xt=X_tar;
X=[Xs;Xt];

color1=[1,0,0];%red
color2=[0,0,1];%blue
Y1=[repmat(color1,[length(Y_src),1]);repmat(color2,[length(Y_tar),1])];

mappedX = tsne(X, Y1, 2,100,30);

savefile = ['C:\Users\lenovo\Documents\MATLAB\COIL-Augment-tsne\save_tu\map_COIL_100_10x10','.mat'];
save(savefile, 'mappedX','X_src','X_tar','Y_src','Y_tar');


完成。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/90158.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

时序分解 | MATLAB实现基于SVD奇异值分解的信号分解分量可视化

时序分解 | MATLAB实现基于SVD奇异值分解的信号分解分量可视化 目录 时序分解 | MATLAB实现基于SVD奇异值分解的信号分解分量可视化效果一览基本介绍程序设计参考资料 效果一览 基本介绍 SVD分解重构算法,MATLAB程序,奇异值分解 (Singular Value Decompo…

c语言调用mciSendString播放音乐

如下所示&#xff0c;这是一个使用c语言调用系统方法mciSendString()&#xff0c;让系统播放音乐的示例&#xff1a; baihuaxiang 代码&#xff1a; #include <graphics.h> #include <Windows.h> #include <mmsystem.h>#pragma comment(lib,"WINMM.LIB…

数据结构——线性数据结构(数组,链表,栈,队列)

文章目录 1. 数组2. 链表2.1. 链表简介2.2. 链表分类2.2.1. 单链表2.2.2. 循环链表2.2.3. 双向链表2.2.4. 双向循环链表 2.3. 应用场景2.4. 数组 vs 链表 3. 栈3.1. 栈简介3.2. 栈的常见应用常见应用场景3.2.1. 实现浏览器的回退和前进功能3.2.2. 检查符号是否成对出现3.2.3. 反…

3D模型转换工具HOOPS Exchange助力打造虚拟现实应用程序

挑战&#xff1a; 支持使用各种 CAD 系统和 CAD 文件格式的客户群向可视化硬件提供快速、准确的数据加载提供对详细模型信息的访问&#xff0c;同时确保高帧率性能 解决方案&#xff1a; HOOPS Exchange领先的CAD数据转换工具包 结果&#xff1a; 确保支持来自领先工程软件…

边缘计算网关是如何提高物联网的效率的?

随着物联网的持续发展&#xff0c;物联网应用的丰富和规模的扩大&#xff0c;带来了海量的数据处理、传输和计算需求。 传统的“数据中央处理”模式越来越难以适应物联网的扩展速度&#xff0c;在这一趋势下&#xff0c;边缘计算在物联网系统的部署运营中就发挥出了显著的增效…

docker在阿里云上的镜像仓库管理

目录 一.登录进入阿里云网站&#xff0c;点击个人实例进行创建 二.创建仓库&#xff0c;填写相关信息 三.在访问凭证中设置固定密码用于登录&#xff0c;登录时用户名是使用你注册阿里云的账号名称&#xff0c;密码使用设置的固定密码 四.为镜像打标签并推送到仓库 五.拉取…

什么是Sui Kiosk,它可以做什么,如何赋能创作者?

创作者和IP持有者需要一些工具帮助他们在区块链上实现其商业模式。Sui Kiosk作为Sui上的一种原语可以满足这种需求&#xff0c;为创作者提供动态选项&#xff0c;使他们能够在任何交易场景中设置完成交易的条件。 本文将向您介绍为什么要在SuiFrens中使用Sui Kiosk&#xff0c…

分布式 - 服务器Nginx:一小时入门系列之 HTTPS协议配置

文章目录 1. HTTPS 协议2. 生成 SSL 证书和私钥文件3. 配置 SSL 证书和私钥文件4. HTTPS 协议优化 1. HTTPS 协议 HTTPS 是一种通过计算机网络进行安全通信的协议。它是HTTP的安全版本&#xff0c;通过使用 SSL 或 TLS 协议来加密和保护数据传输。HTTPS的主要目的是确保在客户…

渗透测试是什么?怎么做?

渗透测试报告 一、什么是渗透测试&#xff1f; 渗透测试是可以帮助用户对目前自己的网络、系统、应用的缺陷有相对直观的认识和了解。渗透测试尽可能地以黑客视角对用户网络安全性进行检查&#xff0c;对目标网络、系统和应用的安全性作深入的探测&#xff0c;发现系统最脆弱的…

安防监控平台EasyCVR视频汇聚平台增加首页告警类型的详细介绍

安防监控/视频集中存储/云存储EasyCVR视频汇聚平台&#xff0c;可支持海量视频的轻量化接入与汇聚管理。平台能提供视频存储磁盘阵列、视频监控直播、视频轮播、视频录像、云存储、回放与检索、智能告警、服务器集群、语音对讲、云台控制、电子地图、平台级联、H.265自动转码等…

开源的安全性:挑战与机会

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…

lvs-dr模式+keepalived

一&#xff0c;keepalived概述 Keepalived 是一个基于VRRP协议来实现的LVS服务高可用方案&#xff0c;可以解决静态路由出现的单点故障问题。 在一个LVS服务集群中通常有主服务器&#xff08;MASTER&#xff09;和备份服务器&#xff08;BACKUP&#xff09;两种角色的服务器&am…

Android 13 - Media框架(8)- MediaExtractor

上一篇我们了解了 GenericSource 需要依赖 IMediaExtractor 完成 demux 工作&#xff0c;这一篇我们就来学习 android media 框架中的第二个服务 media.extractor&#xff0c;看看 IMediaExtractor 是如何创建与工作的。 1、MediaExtractorService media.extractor 和 media.p…

Django(5)-视图函数和模板渲染

Django 中的视图的概念是「一类具有相同功能和模板的网页的集合」 在我们的投票应用中&#xff0c;我们需要下列几个视图&#xff1a; 问题索引页——展示最近的几个投票问题。 问题详情页——展示某个投票的问题和不带结果的选项列表。 问题结果页——展示某个投票的结果。 投…

Goland 配置go modules 环境变量

我的配置&#xff0c;仅供参考&#xff1a; GOPROXYhttps://goproxy.cn,direct;GO111MODULEon;GOSUMDBoff;GONOSUMDB*

WPF自定义命令及属性改变处理

1、项目建构 2、自定义命令 namespace WpfDemo.Base {public class MyCommand : ICommand{Action executeAction;public MyCommand(Action action){executeAction action;}public event EventHandler? CanExecuteChanged;public bool CanExecute(object? parameter){retu…

基于云原生网关的流量防护实践

作者&#xff1a;涂鸦 背景 在分布式系统架构中&#xff0c;每个请求都会经过很多层处理&#xff0c;比如从入口网关再到 Web Server 再到服务之间的调用&#xff0c;再到服务访问缓存或 DB 等存储。在下图流量防护体系中&#xff0c;我们通常遵循流量漏斗原则进行流量防护。…

springcloud3 GateWay章节-Nacos+gateway动态路由负载均衡4

一 工程结构 1.1 工程 1.2 搭建gatewayapi工程 1.pom文件 <dependency><groupId>junit</groupId><artifactId>junit</artifactId><version>4.13</version><scope>test</scope></dependency><!--gateway--&g…

如何开发小程序 3 个月赚 6.18 元

前言 随着 Ai 的崛起&#xff0c;开发者的就业也越来越困难&#xff0c;好像疫情放开后整个世界都变了&#xff0c;全球都在经历经济下行的压力。那么作为个人开发者如何在工作之余获取额外收入呢&#xff1f;笔者也是个一般开发者&#xff0c;没有牛逼的技术实力&#xff0c;…

不同版本.net引用同一个项目

项目文件.csproj文件内容如下&#xff1a; 重点是&#xff1a;不能有其他的 netstandard2;net40;net45;net46;net6 <Project Sdk"Microsoft.NET.Sdk"><PropertyGroup><TargetFrameworks>netstandard2;net40;net45;net46;net6</TargetFrame…