MT-Pref数据集:包含18种语言的18k实例,涵盖多个领域。实验表明它能有效提升Tower模型在WMT23和FLORES基准测试中的翻译质量。

2024-10-10,由电信研究所、里斯本大学等联合创建MT-Pref数据集,它包含18种语言方向的18k实例,覆盖了2022年后的多个领域文本。通过在WMT23和FLORES基准测试上的实验,我们展示了使用MT-Pref数据集对Tower模型进行对齐可以显著提高翻译质量。

一、研究背景:

大型语言模型在机器翻译中的使用受到了研究社区的广泛关注。这些模型通常使用单个人参考翻译进行微调,但这可能不足以进一步提升翻译质量,因为对于给定的源文本,可能存在多种有效的翻译,其中一些可能比其他的更受偏好。

目前遇到困难和挑战 :

1、现有的数据集通常只包含一两模型的翻译输出,限制了其多样性和适用性。

2、这些数据集要么完全自动生成,要么完全基于人类反馈,前者缺乏关键验证,后者资源有限且难以扩展。

3、自动评估指标可能无法完全符合人类的预期,而人类评估虽然质量高,但成本高且难以大规模实施。

数据集地址:MT-PREF|机器翻译数据集|偏好分析数据集

二、让我们来一起看一下MT-Pref

在机器翻译领域,与人类偏好一致是开发准确、安全的大型语言模型的重要步骤。然而,基于人类反馈的偏好数据获取和整理成本非常高。通过结合了自动指标和人类评估的优势,创建的新的高质量偏好数据集MT-Pref(Metric-induced Translation Preference)。

数据集包含了来自多个高质量机器翻译系统生成的翻译的句子级质量评估,这些评估由专业语言学家提供。数据集覆盖了18种语言方向,文本来源多样,时间跨度为2022年后。

数据集构建 :

数据集的构建首先收集了专业语言学家对多个高质量机器翻译系统生成的翻译进行的句子级质量评估,然后使用这些评估来测试当前自动指标恢复这些偏好的能力。基于这一分析,研究者使用xComet-xl和xComet-xxl指标的组合来筛选出最受欢迎的和最不受欢迎的翻译。

数据集特点 :

1、包含18种语言方向,覆盖多种领域。

2、 包含18k实例,每个实例都经过专业语言学家的评估。

3、使用xComet-xl+xxl指标来诱导偏好,确保与人类评估的高相关性。

数据集可以用于训练和微调机器翻译模型,以提高翻译质量并使其更符合人类的偏好。研究者可以使用这些数据来训练偏好学习算法,如对比偏好优化(CPO)

基准测试 :

在WMT23和FLORES基准测试中,使用MT-Pref数据集进行微调的模型显示出了显著的翻译质量提升。

不同系统之间的成对偏好:Google 和 GPT-4 翻译比开源替代方案更受欢迎。

使用 MT-Pref 进行 CPO 微调可以提高 FLORES 上塔模型的翻译质量

三、让我们展望MT-Pref数据集的应用:

比如,我在一个多语言网站工作。

我的工作是确保网站上的各种产品描述、用户指南和新闻稿在翻译成不同语言后,不仅准确无误,还要保持原有的风格和语气。这可不是一件容易的事情哦。常使用的是翻译系统,虽然翻译得还算准确,但是有时候就像是机器人写出来的,缺乏那种“人味儿”。比如,如果原文里有些幽默的语句,翻译后的版本可能就变得干巴巴的,没有表达出作者的心境。

自从使用基于MT-Pref数据集训练的翻译系统后,似乎变得有些不一样了。

这个数据集厉害的地方在于,它能够教会翻译系统理解人类的偏好,知道什么样的翻译更受人喜欢。

就拿我们网站上的一款新咖啡机的介绍来说吧。原文里有句话是这样的:“这款咖啡机不仅能让你的早晨充满咖啡香,还能让你的家变成一个小小的咖啡馆。”用我们以前的翻译系统,可能就直接翻译成:“这个咖啡机可以让你的家早上充满咖啡的味道,并且让你的家变成一个小咖啡馆。”虽然意思没错,但是那种温馨的感觉就没了。

好在使用智能系统,翻译出来的可能就是:“这台咖啡机不仅能为你的清晨带来浓郁的咖啡香气,还能瞬间把你的客厅变成一个温馨的小咖啡馆。”这样的翻译不仅保留了原文的意境,还增加了一些让人会心一笑的细节,让产品介绍更加吸引人。

而且,这个系统还能根据不同的语言习惯,做出相应的调整。比如,对于西班牙语的用户,它可能会加入一些热情洋溢的词汇,让整个介绍更加贴近当地文化。对于德语用户,它可能会使用一些更精确的描述词汇,让产品介绍显得更加专业。

现在网站内容不仅在不同语言之间保持了高度的一致性,还提高了翻译的质量和风格上的匹配度。这让不同语言的用户都能获得更好的阅读体验,也让我们的网站显得更加专业和贴心。

来吧,让我们走进:MT-PREF|机器翻译数据集|偏好分析数据集

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/897459.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【云从】十、常见安全问题与云计算的计费模式

文章目录 1、常见安全问题1.1 DDoS攻击1.2 病毒攻击1.3 木马攻击1.4 代码自身漏洞 2、安全体系3、云计算的计费模式4、常见云产品的计费方案5、云产品计费案例 1、常见安全问题 1.1 DDoS攻击 通过分布在各地的大量终端,同时向目标发送恶意报包,以占满目…

【C++贪心】1536. 排布二进制网格的最少交换次数|1880

本文涉及知识点 C贪心 决策包容性 LeetCode1536. 排布二进制网格的最少交换次数 给你一个 n x n 的二进制网格 grid,每一次操作中,你可以选择网格的 相邻两行 进行交换。 一个符合要求的网格需要满足主对角线以上的格子全部都是 0 。 请你返回使网格满…

精通CSS布局:探索经典的网页布局样式和技术

一、经典两列布局样式 1.概念 许多网站有一些特点,如页面顶部放置一个大的导航或广告条,右侧是链接或图片,左侧放置主要内容,页面底部放置版权信息等。 一般情况下,页面布局的两列都有固定宽度,而且从内容…

7.hyperf安装【Docker】

- 前言:为了与容器中的mysql通信,先运行mysql,再使用 --link关联 一、 拉取 php版本为8.2的版本 8.3的版本,启动框架时,报错。 docker pull hyperf/hyperf:8.2-alpine-vedge-swoole-slim二、 运行hyperf环境容器 --l…

分布式理论基础

文章目录 1、理论基础2、CAP定理1_一致性2_可用性3_分区容错性4_总结 3、BASE理论1_Basically Available(基本可用)2_Soft State(软状态)3_Eventually Consistent(最终一致性)4_总结 1、理论基础 在计算机…

解决k8s集群中安装ks3.4.1开启日志失败问题

问题 安装kubesphere v3.4.1时,开启了日志功能,部署时有三个pod报错了 Failed to pull image “busybox:latest”: rpc error: code Unknown desc failed to pull and unpack image “docker.io/library/busybox:latest”: failed to copy: httpRead…

Java项目-基于springboot框架的学习选课系统项目实战(附源码+文档)

作者:计算机学长阿伟 开发技术:SpringBoot、SSM、Vue、MySQL、ElementUI等,“文末源码”。 开发运行环境 开发语言:Java数据库:MySQL技术:SpringBoot、Vue、Mybaits Plus、ELementUI工具:IDEA/…

【Petri网导论学习笔记】Petri网导论入门学习(八) —— 1.6 系统的Petri网模型

导航 1.6 系统的Petri网模型例 1.6 化学反应例 1.7 进程的通信协议例 1.8 P/V操作例 1.9 临界段互斥问题例 1.10 生产者/消费者问题例 1.11 哲学家就餐问题 1.6 系统的Petri网模型 理论的目的在于应用,接下来是一些关于用Petri网标识离散事件系统的例子 这里就直接…

C++ 游戏开发:从基础到进阶

✅作者简介:2022年博客新星 第八。热爱国学的Java后端开发者,修心和技术同步精进。 🍎个人主页:Java Fans的博客 🍊个人信条:不迁怒,不贰过。小知识,大智慧。 💞当前专栏…

【鸡翅Club】项目启动

一、项目背景 这是一个 C端的社区项目,有博客、交流,面试学习,练题等模块。 项目的背景主要是我们想要通过面试题的分类,难度,打标,来评估员工的技术能力。同时在我们公司招聘季的时候,极大的…

平衡相图在矿物加工中的广泛应用,含材料设计、性能预测等

平衡相图是描述在特定温度和压力下,不同相(如固体、液体、气体等)之间平衡关系的图表。在矿物加工领域,通过分析相图可以详细了解不同成分的矿物在特定温度和压力条件下的相变行为,从而设计出更高效的提取和分离方法&a…

EasyExcel自定义下拉注解的三种实现方式

文章目录 一、简介二、关键组件1、ExcelSelected注解2、ExcelDynamicSelect接口(仅用于方式二)3、ExcelSelectedResolve类4、SelectedSheetWriteHandler类 三、实际应用总结 一、简介 在使用EasyExcel设置下拉数据时,每次都要创建一个SheetWr…

文件误删并清空回收站:全面解析与高效恢复策略

一、文件误删并清空回收站的遭遇 在日常使用电脑或移动设备的过程中,我们难免会遇到一些令人懊恼的数据丢失问题,其中文件误删并清空回收站便是最为常见的一种。当你不小心删除了某个重要文件,并且随后又毫不留情地清空了回收站,…

flutter camera 插件相机不占满屏幕的问题

当 CameraPreview 超出屏幕范围时,可以通过以下几种方法来处理超出部分被裁剪的问题: 使用 FittedBox:FittedBox 可以自动调整子组件的大小和比例,使其适应父容器。使用 BoxFit 属性:在 FittedBox 中使用不同的 BoxFi…

Rust初踩坑

一、下载 到官网https://www.rust-lang.org/zh-CN/tools/install下载你需要的版本 二、安装 执行rustup-init 文件,选择1 按提示直到安装完成 可以通过以下命令测试: rustc -V # 注意的大写的 V cargo -V # 注意的大写的 V三、在VScode中…

python + mitmproxy 爬手机app (1)

起因, 目的: 想爬手机上某鱼。 mitmproxy 简介: 一句话: mitmproxy 就是中间人攻击. (只不过, 你安装,就代表你愿意承担风险。)源码:https://github.com/mitmproxy/mitmproxy文档: https://mitmproxy.org/ 安装过程: 见聊天记…

【Vue】Vue3.0(十五)Vue 3.0 中 hooks 的概念

🏡作者主页:点击! 🤖Vue专栏:点击! ⏰️创作时间:2024年10月22日21点50分 背景:在一些情况下,前台的组件是可以复用的,那这些复用的对象和数据,为…

cnn_lstm_kan模型创新实现股票预测

获取更多完整项目代码数据集,点此加入免费社区群 : 首页-置顶必看 1. 项目简介 A002-cnn_lstm_kan模型创新实现股票预测项目旨在通过结合卷积神经网络(CNN)、长短期记忆网络(LSTM)以及知识注意网络&#…

智和信通助力某大型服饰集团建设综合监控运维

某大型服饰集团成立于90年代,是广受认可的国民生活时尚品牌,近年来随着集团公司业务规模的不断扩大,信息化作为支撑集团公司业务发展的重要技术手段,信息系统无论在规模上还是在复杂程度上均有了很大程度的增加。 项目现状 当前信…

【嵌入式实时操作系统开发】智能家居入门4(FreeRTOS、MQTT服务器、MQTT协议、STM32、微信小程序)

前面已经发了智能家居入门的1、2、3了,在实际开发中一般都会使用到实时操作系统,这里就以FreeRTOS为例子,使用标准库。记录由裸机转到实时操作系统所遇到的问题以及总体流程。相较于裸机,系统实时性强了很多,小程序下发…