模型预测笔记(一):数据清洗分析及可视化、模型搭建、模型训练和预测代码一体化和对应结果展示(可作为baseline)

模型预测

  • 一、导入关键包
  • 二、如何载入、分析和保存文件
  • 三、修改缺失值
    • 3.1 众数
    • 3.2 平均值
    • 3.3 中位数
    • 3.4 0填充
  • 四、修改异常值
    • 4.1 删除
    • 4.2 替换
  • 五、数据绘图分析
    • 5.1 饼状图
      • 5.1.1 绘制某一特征的数值情况(二分类)
    • 5.2 柱状图
      • 5.2.1 单特征与目标特征之间的图像
      • 5.2.2 多特征与目标特征之间的图像
    • 5.3 折线图
      • 5.3.1 多个特征之间的关系图
    • 5.4 散点图
  • 六、特征选择
    • 6.1、相关性分析
      • 6.1.1 皮尔逊相关系数
      • 6.1.2 斯皮尔曼相关系数
      • 6.1.3 肯德尔相关系数
      • 6.1.4 计算热力图
    • 6.2 主成分分析
    • 6.3 线性判别分析
  • 七、数据归一化
  • 八、模型搭建
  • 九、模型训练
  • 十、评估模型
  • 十一、预测模型

一、导入关键包

# 导入数据分析需要的包
import pandas as pd
import numpy as np
# 可视化包
import seaborn as sns
sns.set(style="whitegrid")
import matplotlib.pyplot as plt
%matplotlib inline
# 忽略警告信息
import warnings
warnings.filterwarnings('ignore')
# 导入数据分析需要的包
import pandas as pd
import numpy as np
from datetime import datetime

# 构建多个分类器
from sklearn.ensemble import RandomForestClassifier          # 随机森林
from sklearn.svm import SVC, LinearSVC                       # 支持向量机
from sklearn.linear_model import LogisticRegression          # 逻辑回归
from sklearn.neighbors import KNeighborsClassifier           # KNN算法
from sklearn.naive_bayes import GaussianNB                   # 朴素贝叶斯
from sklearn.tree import DecisionTreeClassifier              # 决策树分类器
from xgboost import XGBClassifier
from sklearn.ensemble import AdaBoostClassifier
from sklearn.ensemble import GradientBoostingClassifier   
from sklearn.metrics import precision_score, recall_score, f1_score
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import GridSearchCV  # 网格搜索
np.set_printoptions(suppress=True)

# 显示中文
plt.rcParams["font.sans-serif"] = ["SimHei"]
plt.rcParams["axes.unicode_minus"] = False

二、如何载入、分析和保存文件

df=pd.read_csv('data/dataset.csv')


df.head(5)# 查看前几列数据
df.tail() # 返回CSV文件的最后几行数据。
df.info() # 显示CSV文件的基本信息,包括数据类型、列数、行数、缺失值等。
df.describe()# 对CSV文件的数值型数据进行统计描述,包括计数、均值、标准差、最小值、最大值等。
df.shape()# 返回CSV文件的行数和列数。
df['IS_WX'].unique()  # 返回CSV文件中某一列的唯一值。
df.value_counts()# 计算CSV文件中某一列中每个值的出现次数。
df.groupby('col1')['col2'] # 按照某一列的值进行分组,并对其他列进行聚合操作,如求和、计数、平均值等。
df.sort_values(by='col1') # 按照某一列的值进行排序。
df.pivot_table(values='C', index='A', columns='B', aggfunc='mean')# 创建透视表,根据指定的行和列对数据进行汇总和分析。

# 保存处理后的数据集
df.to_csv('data/Telecom_data_flag.csv')

三、修改缺失值

3.1 众数

# 对每一列属性采用相应的缺失值处理方式,通过分析发现这类数据都可以采用众数的方式解决
df.isnull().sum()
modes = df.mode().iloc[0]
print(modes)
df = df.fillna(modes)
print(df.isnull().sum())

3.2 平均值

mean_values = df.mean()
print(mean_values)
df = df.fillna(mean_values)
print(df.isnull().sum())

3.3 中位数

median_values = df.median()
print(median_values)
df = df.fillna(median_values)
print(df.isnull().sum())

3.4 0填充

df = df.fillna(0)
print(df.isnull().sum())

四、修改异常值

4.1 删除

1.删除DataFrame表中全部为NaN的行

	your_dataframe.dropna(axis=0,how='all') 

2.删除DataFrame表中全部为NaN的列

	your_dataframe.dropna(axis=1,how='all') 

3.删除表中含有任何NaN的行

	your_dataframe.dropna(axis=0,how='any') 

4.删除表中含有任何NaN的列

  your_dataframe.dropna(axis=1,how='any')

4.2 替换

这里的替换可以参考前文的中位数,平均值,众数,0替换等。

	replace_value = 0.0
	# 这里设置 inplace 为 True,能够直接把表中的 NaN 值替换掉
	your_dataframe.fillna(replace_value, inplace=True)
	# 如果不设置 inplace,则这样写就行
	# new_dataframe = your_dataframe.fillna(replace_value)

五、数据绘图分析

5.1 饼状图

5.1.1 绘制某一特征的数值情况(二分类)

# 查看总体客户流失情况
churnvalue = df["LEAVE_FLAG"].value_counts()
labels = df["LEAVE_FLAG"].value_counts().index
plt.pie(churnvalue,
        labels=["未流失","流失"],
        explode=(0.1,0),
        autopct='%.2f%%', 
        shadow=True,)
plt.title("客户流失率比例",size=24)
plt.show()
# 从饼形图中看出,流失客户占总客户数的很小的比例,流失率达3.58%

在这里插入图片描述

5.2 柱状图

5.2.1 单特征与目标特征之间的图像

# 粘性/忠诚度分析  包括绑定银行卡张数
fig, axes = plt.subplots(1, 1, figsize=(12,12))
plt.subplot(1,1,1) 
# palette参数表示设置颜色
gender=sns.countplot(x='BANK_NUM',hue="LEAVE_FLAG",data=df,palette="Pastel2") 
plt.xlabel("绑定银行卡张数",fontsize=16)
plt.title("LEAVE_FLAG by BANK_NUM",fontsize=18)
plt.ylabel('count',fontsize=16)
plt.tick_params(labelsize=12)     # 设置坐标轴字体大小
# 从此表可知,对于没有绑定银行卡的用户流失情况会更大,应该加强督促用户绑定银行卡

在这里插入图片描述

# 查看正常用户与流失用户在上网流量上的差别
plt.figure(figsize=(10,6))
g = sns.FacetGrid(data = df,hue = 'LEAVE_FLAG', height=4, aspect=3)
g.map(sns.distplot,'BYTE_ALL',norm_hist=True)
g.add_legend()
plt.ylabel('density',fontsize=16)
plt.xlabel('BYTE_ALL',fontsize=16)
plt.xlim(0, 100)
plt.tick_params(labelsize=13)     # 设置坐标轴字体大小
plt.tight_layout()
plt.show()
# 从上图看出,上网流量少的用户流失率相对较高。

在这里插入图片描述

5.2.2 多特征与目标特征之间的图像

这里绘制的多个二分类特征的情况是与目标特征之间的关系

# 粘性/忠诚度分析  包括是否捆绑微信、是否捆绑支付宝
# sns.countplot()函数绘制了"是否使用支付宝"(IS_ZFB)这一列的柱状图,并根据"LEAVE_FLAG"(是否离网)进行了颜色分类。
fig, axes = plt.subplots(1, 2, figsize=(12,12))
plt.subplot(1,2,1) 
# palette参数表示设置颜色
partner=sns.countplot(x="IS_ZFB",hue="LEAVE_FLAG",data=df,palette="Pastel2")
plt.xlabel("是否使用支付宝(1代表使用,0代表使用)")
plt.title("LEAVE_FLAG by IS_ZFB",fontsize=18)
plt.ylabel('count',fontsize=16)
plt.tick_params(labelsize=12)   # 设置坐标轴字体大小

plt.subplot(1,2,2)
seniorcitizen=sns.countplot(x="IS_WX",hue="LEAVE_FLAG",data=df,palette="Pastel2")
plt.xlabel("是否使用微信(1代表使用,0代表使用)")
plt.title("LEAVE_FLAG by IS_WX",fontsize=18)
plt.ylabel('count',fontsize=16)
plt.tick_params(labelsize=12)   # 设置坐标轴字体大小
# 从此表可知  支付宝绑定目前对于用户流失没有影响,微信的绑定影响会稍微大点,可能是微信用户用的较多

在这里插入图片描述

# 异常性 根据用户流失情况来结合判定
covariables=["CMPLNT_NUM", "STOP_COUNT"]
fig,axes=plt.subplots(1,2,figsize=(20,12))
for i, item in enumerate(covariables):
    '''
    0,'CMPLNT_NUM'
    1,'STOP_COUNT'
    '''
    plt.subplot(1,2,(i+1))
    ax=sns.countplot(x=item,hue="LEAVE_FLAG",data=df,palette="Set2")
    plt.xlabel(str(item),fontsize=16)
    plt.tick_params(labelsize=14)     # 设置坐标轴字体大小
    plt.title("LEAVE_FLAG by "+ str(item),fontsize=20)
    i=i+1
plt.tight_layout()
plt.show()
# 从此表可知 最近6个月累计投诉次数间接性的决定了用户的流失,停机天数也和用户流失成正相关。

在这里插入图片描述

5.3 折线图

5.3.1 多个特征之间的关系图

# 用户的成长性分析,结合用户流失情况。
# 包括流量趋势、语音通话次数趋势、语音通话时长趋势、交往圈趋势
# 提取特征数据列
feature1 = df["LIULIANG_B"]
feature2 = df["YUYING_COUNT"]
feature3 = df["YUYING_B"]
feature4 = df["JIAOWANG_B"]

# 绘制折线图
plt.plot(feature1, label="LIULIANG_B")
plt.plot(feature2, label="YUYING_COUNT")
plt.plot(feature3, label="YUYING_B")
plt.plot(feature4, label="JIAOWANG_B")

# 添加标题和标签
plt.title("Trend of User growth")
plt.xlabel("Index")
plt.ylabel("Value")

# 添加图例
plt.legend()

# 显示图表
plt.show()
# 从此图可以发现针对流量趋势来说,用户的波动是最大的。

在这里插入图片描述

5.4 散点图

df.plot(x="SERV_ID_COUNT", y="CDR_NUM", kind="scatter", c="red")
plt.show()

这段代码的作用是绘制一个以"SERV_ID_COUNT"为横轴,"CDR_NUM"为纵轴的散点图,并将散点的颜色设置为红色。通过这个散点图,可以直观地观察到"SERV_ID_COUNT"和"CDR_NUM"之间的关系。
在这里插入图片描述

六、特征选择

6.1、相关性分析

6.1.1 皮尔逊相关系数

plt.figure(figsize=(16,8))
df.corr()['LEAVE_FLAG'].sort_values(ascending = False).plot(kind='bar')
plt.tick_params(labelsize=14)     # 设置坐标轴字体大小
plt.xticks(rotation=45)         # 设置x轴文字转向
plt.title("Correlations between LEAVE_FLAG and variables",fontsize=20)
plt.show()
# 从图可以直观看出,YUYING_COUNT 、YUYING_B、IS_ZFB、BALANCE、JIAOWANG_B、IS_WX这六个变量与LEAVE_FLAG目标变量相关性最弱。

在这里插入图片描述

6.1.2 斯皮尔曼相关系数

plt.figure(figsize=(16,8))
df.corr(method='spearman')['LEAVE_FLAG'].sort_values(ascending = False).plot(kind='bar')
plt.tick_params(labelsize=14)     # 设置坐标轴字体大小
plt.xticks(rotation=45)         # 设置x轴文字转向
plt.title("Correlations between LEAVE_FLAG and variables",fontsize=20)
plt.show()

6.1.3 肯德尔相关系数

plt.figure(figsize=(16,8))
df.corr(method='kendall')['LEAVE_FLAG'].sort_values(ascending = False).plot(kind='bar')
plt.tick_params(labelsize=14)     # 设置坐标轴字体大小
plt.xticks(rotation=45)         # 设置x轴文字转向
plt.title("Correlations between LEAVE_FLAG and variables",fontsize=20)
plt.show()

6.1.4 计算热力图

# 计算相关性矩阵
corr_matrix = df.corr()

# 绘制热力图
plt.figure(figsize=(10, 8))
sns.heatmap(corr_matrix, annot=True, cmap="coolwarm")
plt.title("Correlation Heatmap", fontsize=16)
plt.show()

6.2 主成分分析

PCA思想:构造原变量的一系列线性组合形成几个综合指标,以去除数据的相关性,并使低维数据最大程度保持原始高维数据的方差信息

一般来说在进行数据降维之前,需要先对其做归一化

from sklearn import preprocessing
X_scaled = preprocessing. scale(X)
pca = PCA(n_components=2)       # 加载PCA算法,设置降维后主成分数目为2
# n_components的值不能大于n_features(特征数)和n_classes(类别数)之间的较小值减1。
reduced_x = pca.fit_transform(X_scaled)  # 对样本进行降维
reduced_x = pd.DataFrame(reduced_x, columns = ['pca_1','pca_2'])

PCA代码:

# -*- coding:utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
from sklearn.decomposition import PCA           # 加载PCA算法包
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn import svm
import pandas as pd


df = pd.read_csv(r'D:\Python\test\iris.csv')
X = df.iloc[:, 0:4]
Y = df.iloc[:, 4]
x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.2)
pca = PCA(n_components=2)       # 加载PCA算法,设置降维后主成分数目为2
# n_components的值不能大于n_features(特征数)和n_classes(类别数)之间的较小值减1。
reduced_x = pca.fit_transform(X)  # 对样本进行降维
reduced_x = pd.DataFrame(reduced_x, columns = ['pca_1','pca_2'])
print(reduced_x.head(5))

# SVM分类
x_train, x_test, y_train, y_test = train_test_split(reduced_x, Y, test_size=0.2)
clf = svm.SVC(gamma='scale', decision_function_shape="ovr")    # 一对多法
# clf = svm.SVC(gamma='scale', decision_function_shape='ovo')  # 一对一法
clf.fit(x_train, y_train.astype('int'))
y_pred = clf.predict(x_test)


# 可视化,画分类结果图
N, M = 500, 500  # 横纵各采样多少个值
x1_min, x2_min = x_train.min(axis=0)
x1_max, x2_max = x_train.max(axis=0)
t1 = np.linspace(x1_min, x1_max, N)
t2 = np.linspace(x2_min, x2_max, M)
x1, x2 = np.meshgrid(t1, t2)  # 生成网格采样点
x_show = np.stack((x1.flat, x2.flat), axis=1)  # 测试点
y_predict = clf.predict(x_show)
cm_light = mpl.colors.ListedColormap(['#A0FFA0', '#FFA0A0', '#A0A0FF'])
cm_dark = mpl.colors.ListedColormap(['g', 'r', 'b'])
plt.pcolormesh(x1, x2, y_predict.reshape(x1.shape), cmap=cm_light)
plt.scatter(x_train.iloc[:, 0], x_train.iloc[:, 1], c=y_train, cmap=cm_dark, marker='o', edgecolors='k')
plt.grid(True, ls=':')
plt.show()

PCA结果:
在这里插入图片描述

6.3 线性判别分析

LDA思想:最早提出是为了解决生物问题的分类问题,有监督的线性降维。使用数据的类别信息,将高维的样本线性投影到低维空间中,使得数据样本在低维空间中,数据的类别区分度最大

LDA代码:

# 1.导入所需的库和模块:
import matplotlib.pyplot as plt
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.datasets import load_iris

# 2.加载数据集:
iris = load_iris()
X = iris.data
y = iris.target

# 3.创建一个LDA对象并拟合数据:
# 在这里,n_components参数指定要保留的主成分数量。
lda = LinearDiscriminantAnalysis(n_components=2)
X_lda = lda.fit_transform(X, y)

# 4.可以使用以下代码可视化结果:
plt.scatter(X_lda[:, 0], X_lda[:, 1], c=y)
plt.xlabel('LD1')
plt.ylabel('LD2')
plt.show()

LDA结果:
在这里插入图片描述

七、数据归一化

特征主要分为连续特征和离散特征,其中离散特征根据特征之间是否有大小关系又细分为两类。

  • 连续特征:一般采用归一标准化方式处理。
  • 离散特征:特征之间没有大小关系。
  • 离散特征:特征之间有大小关联,则采用数值映射。
# 通过归一化处理使特征数据标准为1,均值为0,符合标准的正态分布,
# 降低数值特征过大对预测结果的影响
# 除了目标特征全部做归一化,目标特征不用做,归一化会导致预测结果的解释变得困难
from sklearn.preprocessing import StandardScaler  
# 实例化一个转换器类
scaler = StandardScaler(copy=False)
target = df["LEAVE_FLAG"]
# 提取除目标特征外的其他特征
other_features = df.drop("LEAVE_FLAG", axis=1)
# 对其他特征进行归一化
normalized_features = scaler.fit_transform(other_features)
# 将归一化后的特征和目标特征重新组合成DataFrame
normalized_data = pd.DataFrame(normalized_features, columns=other_features.columns)
normalized_data["LEAVE_FLAG"] = target
normalized_data.head()

八、模型搭建

# 深拷贝
X=normalized_data.copy()
X.drop(['LEAVE_FLAG'],axis=1, inplace=True)
y=df["LEAVE_FLAG"]
#查看预处理后的数据
X.head()

# 建立训练数据集和测试数据集
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = 0.3, random_state = 0)
print("原始训练集包含样本数量: ", len(X_train))
print("原始测试集包含样本数量:  ", len(X_test))
print("原始样本总数: ", len(X_train)+len(X_test))

# 使用分类算法 
Classifiers=[
            ["RandomForest",RandomForestClassifier()],
            ["LogisticRegression",LogisticRegression(C=1000.0, random_state=30, solver="lbfgs",max_iter=100000)],
            ["NaiveBayes",GaussianNB()],
            ["DecisionTree",DecisionTreeClassifier()],
            ["AdaBoostClassifier", AdaBoostClassifier()],
            ["GradientBoostingClassifier", GradientBoostingClassifier()],
            ["XGB", XGBClassifier()]
]

九、模型训练

from datetime import datetime
import pickle
import joblib

def get_current_time():
    current_time = datetime.now()
    formatted_time = current_time.strftime("%Y-%m-%d %H:%M:%S")
    return current_time, formatted_time

Classify_result=[]
names=[]
prediction=[]
i = 0

for name, classifier in Classifiers:
    start_time, formatted_time = get_current_time()
    print("**********************************************************************")
    print("第{}个模型训练开始时间:{}  模型名称为:{}".format(i+1, formatted_time, name))
    classifier = classifier
    classifier.fit(X_train, y_train)
    y_pred = classifier.predict(X_test)
    recall = recall_score(y_test, y_pred)
    precision = precision_score(y_test, y_pred)
    f1score = f1_score(y_test, y_pred)
    model_path = 'models/{}_{}_model.pkl'.format(name, round(precision, 5))
    print("开始保存模型文件路径为:{}".format(model_path))
    # 保存模型方式1
    #     with open('models/{}_{}_model.pkl'.format(name, precision), 'wb') as file:
    #         pickle.dump(classifier, file)
    #     file.close()
    # 保存模型方式2
    joblib.dump(classifier, model_path)
    
    end_time = datetime.now()  # 获取训练结束时间
    print("第{}个模型训练结束时间:{}".format(i+1, end_time.strftime("%Y-%m-%d %H:%M:%S")))
    print("训练耗时:", end_time - start_time)

    # 打印训练过程中的指标
    print("Classifier:", name)
    print("Recall:", recall)
    print("Precision:", precision)
    print("F1 Score:", f1score)
    print("**********************************************************************")
    
    # 保存指标结果
    class_eva = pd.DataFrame([recall, precision, f1score])
    Classify_result.append(class_eva)
    
    name = pd.Series(name)
    names.append(name)
    
    y_pred = pd.Series(y_pred)
    prediction.append(y_pred)
    
    i += 1

在这里插入图片描述

十、评估模型

召回率(recall)的含义是:原本为对的当中,预测为对的比例(值越大越好,1为理想状态)

精确率、精度(precision)的含义是:预测为对的当中,原本为对的比例(值越大越好,1为理想状态)

F1分数(F1-Score)指标综合了Precision与Recall的产出的结果

F1-Score的取值范围从0到1的,1代表模型的输出最好,0代表模型的输出结果最差。

classifier_names=pd.DataFrame(names)
# 转成列表
classifier_names=classifier_names[0].tolist()
result=pd.concat(Classify_result,axis=1)
result.columns=classifier_names
result.index=["recall","precision","f1score"]
result

在这里插入图片描述

十一、预测模型

对于h5模型

from keras.models import load_model
model = load_model('lstm_model.h5')
pred = model.predict(X, verbose=0)
print(pred)

对于pkl模型

loaded_model = joblib.load('models/{}_model.pkl'.format(name))

由于没有预测数据集,选择最后n条数为例进行预测。

# 由于没有预测数据集,选择最后n条数为例进行预测。
n = 500
pred_id = SERV_ID.tail(n)
# 提取预测数据集特征(如果有预测数据集,可以一并进行数据清洗和特征提取)
pred_x = X.tail(n)

# 使用上述得到的最优模型
model = GradientBoostingClassifier()

model.fit(X_train,y_train)
pred_y = model.predict(pred_x) # 预测值

# 预测结果
predDf = pd.DataFrame({'SERV_ID':pred_id, 'LEAVE_FLAG':pred_y})
print("*********************原始的标签情况*********************")
print(df.tail(n)['LEAVE_FLAG'].value_counts())
print("*********************预测的标签情况*********************")
print(predDf['LEAVE_FLAG'].value_counts())
print("*********************预测的准确率*********************")
min1 = min(df.tail(n)['LEAVE_FLAG'].value_counts()[0],predDf['LEAVE_FLAG'].value_counts()[0])
min2 = min(df.tail(n)['LEAVE_FLAG'].value_counts()[1],predDf['LEAVE_FLAG'].value_counts()[1])
print("{}%".format(round((min1+min2)/n,3)*100))
# 由于没有预测数据集,选择最后n条数为例进行预测。
n = 500 # 预测的数量
pred_id = SERV_ID.tail(n)
# 提取预测数据集特征(如果有预测数据集,可以一并进行数据清洗和特征提取)
pred_x = X.tail(n)
# 加载模型
loaded_model = joblib.load('models/GradientBoostingClassifier_0.77852_model.pkl')
# 使用加载的模型进行预测
pred_y = loaded_model.predict(pred_x)
# 预测结果
predDf = pd.DataFrame({'SERV_ID':pred_id, 'LEAVE_FLAG':pred_y})
print("*********************原始的标签情况*********************")
print(df.tail(n)['LEAVE_FLAG'].value_counts())
print("*********************预测的标签情况*********************")
print(predDf['LEAVE_FLAG'].value_counts())
print("*********************预测的准确率*********************")
min1 = min(df.tail(n)['LEAVE_FLAG'].value_counts()[0],predDf['LEAVE_FLAG'].value_counts()[0])
min2 = min(df.tail(n)['LEAVE_FLAG'].value_counts()[1],predDf['LEAVE_FLAG'].value_counts()[1])
print("{}%".format(round((min1+min2)/n,3)*100))

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/80343.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

《Java极简设计模式》第03章:工厂方法模式(FactoryMethod)

作者:冰河 星球:http://m6z.cn/6aeFbs 博客:https://binghe.gitcode.host 文章汇总:https://binghe.gitcode.host/md/all/all.html 源码地址:https://github.com/binghe001/java-simple-design-patterns/tree/master/j…

【路由协议】使用按需路由协议和数据包注入的即时网络模拟传递率(PDR)、总消耗能量和节点消耗能量以及延迟研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…

opencv直方图与模板匹配

import cv2 #opencv读取的格式是BGR import numpy as np import matplotlib.pyplot as plt#Matplotlib是RGB %matplotlib inline def cv_show(img,name):cv2.imshow(name,img)cv2.waitKey()cv2.destroyAllWindows() 直方图 cv2.calcHist(images,channels,mask,histSize,ran…

『C语言』数据在内存中的存储规则

前言 小羊近期已经将C语言初阶学习内容与铁汁们分享完成,接下来小羊会继续追更C语言进阶相关知识,小伙伴们坐好板凳,拿起笔开始上课啦~ 一、数据类型的介绍 我们目前已经学了基本的内置类型: char //字符数据类型 short …

如何使用Redis实现附近商家查询

导读 在日常生活中,我们经常能看见查询附近商家的功能。 常见的场景有,比如你在点外卖的时候,就可能需要按照距离查询附近几百米或者几公里的商家。 本文将介绍如何使用Redis实现按照距离查询附近商户的功能,并以SpringBoot项目…

面试之快速学习STL- vector

1. vector底层实现机制刨析: 简述:使用三个迭代器表示的:  这也就解释了,为什么 vector 容器在进行扩容后,与其相关的指针、引用以及迭代器可能会失效的原因。 insert 整体向后移 erase 整体向前移…

科技云报道:算力之战,英伟达再度释放AI“炸弹”

科技云报道原创。 近日,在计算机图形学顶会SIGGRAPH 2023现场,英伟达再度释放深夜“炸弹”,大模型专用芯片迎来升级版本。 英伟达在会上发布了新一代GH200 Grace Hopper平台,该平台依托于搭载全球首款搭载HBM3e处理器的新型Grac…

优于立方复杂度的 Rust 中矩阵乘法

优于立方复杂度的 Rust 中矩阵乘法 迈克克维特 跟随 发表于 更好的编程 6 分钟阅读 7月 <> 143 中途&#xff1a;三次矩阵乘法 一、说明 几年前&#xff0c;我在 C 年编写了 Strassen 矩阵乘法算法的实现&#xff0c;最近在 Rust 中重新实现了它&#xff0c;因为我继续…

16、可重入锁+设计模式

可重入锁设计模式 while判断并自旋重试获取锁setnx含自然过期时间Lua脚本官网删除锁命令但不能保证可重如 问题&#xff0c;如何兼顾锁的可重入性问题&#xff1f; 可重入锁 可重入锁又名递归锁 是指在同一个线程在外层方法获取锁的时候&#xff0c;再进入该线程的内层方法…

【JVM】对String::intern()方法深入详解(JDK7及以上)

文章目录 1、什么是intern&#xff1f;2、经典例题解释例1例2例3 1、什么是intern&#xff1f; String::intern()是一个本地方法&#xff0c;它的作用是如果字符串常量池中已经包含一个等于此String对象的字符串&#xff0c;则返回代表池中这个字符串的String对象的引用&#…

Unable to find resource t64.exe in package pip._vendor.distlib报错问题解决

Unable to find resource t64.exe in package pip._vendor.distlib报错问题解决 问题报错具体内容具体解决方案解决方法一解决方法二 问题报错具体内容 想要对python的版本进行一个升级,使用如下语句 python -m pip install --upgrade pip出现如下报错 Unable to find reso…

OpenZFS 2.2 发布 RC3,支持 Linux 6.4

导读之前的 OpenZFS 2.2 候选版本已致力于实现与 Linux 6.4 内核的兼容性&#xff0c;而在 2.2-rc3 中&#xff0c;Linux 6.4 支持的元跟踪器已标记为已完成。 OpenZFS 2.2 发布了第 3 个 RC 版本。 之前的 OpenZFS 2.2 候选版本已致力于实现与 Linux 6.4 内核的兼容性&#x…

深入理解内存 —— 函数栈帧的创建与销毁

前言 一位优秀的程序员&#xff0c;必须对内存的分布有深刻的理解&#xff0c;在初学编程的时候&#xff0c;往往有诸如以下很多问题困扰着初学者&#xff0c;而通过今天的分享&#xff0c;我们就可以通过自己的观察&#xff0c;将这些问题统统解决掉 局部变量是怎么创建的&…

Python Opencv实践 - 图像仿射变换

import cv2 as cv import numpy as np import matplotlib.pyplot as pltimg cv.imread("../SampleImages/pomeranian.png", cv.IMREAD_COLOR) rows,cols img.shape[:2] print(img.shape[:2])#使用getAffineTransform来获得仿射变换的矩阵M #cv.getAffineTransform(…

Microsoft ISA服务器配置及日志分析

Microsoft ISA 分析器工具&#xff0c;可分析 Microsoft ISA 服务器&#xff08;或 Forefront 威胁管理网关服务器&#xff09;的日志并生成安全和流量报告。支持来自 Microsoft ISA 服务器组件的以下日志&#xff1a; 数据包过滤器ISA 服务器防火墙服务ISA 服务器网络代理服务…

图片合成动图怎么弄?gif图制作的简单方法

许多鬼畜的表情包其实是用图片合成gif完成的&#xff0c;那么怎么将图片转gif呢&#xff1f;使用GIF中文网的gif合成&#xff08;https://www.gif.cn&#xff09;功能&#xff0c;打开浏览器就可以完成gif图片制作&#xff0c;非常简单方便&#xff0c;一起来了解一下吧。 打开…

智安网络|深入比较:Sass系统与源码系统的差异及选择指南

随着前端开发的快速发展&#xff0c;开发人员需要使用更高效和灵活的工具来处理样式表。在这个领域&#xff0c;Sass系统和源码系统是两个备受关注的选项。 Sass系统 Sass&#xff08;Syntactically Awesome Style Sheets&#xff09;是一种CSS预处理器&#xff0c;它扩展了CS…

Lnton羚通关于【PyTorch】教程:torchvision 目标检测微调

torchvision 目标检测微调 本教程将使用Penn-Fudan Database for Pedestrian Detection and Segmentation 微调 预训练的Mask R-CNN 模型。 它包含 170 张图片&#xff0c;345 个行人实例。 定义数据集 用于训练目标检测、实例分割和人物关键点检测的参考脚本允许轻松支持添加…

Modbus工业RFID设备在自动化生产线中的应用

传统半自动化生产线在运作的过程&#xff0c;因为技工的熟练程度&#xff0c;专业素养的不同&#xff0c;在制造过程中过多的人为干预&#xff0c;工厂将很难对每条生产线的产能进行标准化管理和优化。如果半自动化生产线系统是通过前道工序的作业结果和检测结果来决定产品在下…

实战指南,SpringBoot + Mybatis 如何对接多数据源

系列文章目录 MyBatis缓存原理 Mybatis plugin 的使用及原理 MyBatisSpringboot 启动到SQL执行全流程 数据库操作不再困难&#xff0c;MyBatis动态Sql标签解析 从零开始&#xff0c;手把手教你搭建Spring Boot后台工程并说明 Spring框架与SpringBoot的关联与区别 Spring监听器…