​random --- 生成伪随机数​

源码: Lib/random.py


该模块实现了各种分布的伪随机数生成器。

对于整数,从范围中有统一的选择。 对于序列,存在随机元素的统一选择、用于生成列表的随机排列的函数、以及用于随机抽样而无需替换的函数。

在实数轴上,有计算均匀、正态(高斯)、对数正态、负指数、伽马和贝塔分布的函数。 为了生成角度分布,可以使用 von Mises 分布。

几乎所有模块函数都依赖于基本函数 random(),它在左开右闭区间 0.0 <= X < 1.0 内均匀生成随机浮点数。 Python 使用 Mersenne Twister 作为核心生成器。 它产生 53 位精度的浮点数并且周期为 2**19937-1。 其在 C 中的这个底层实现既快速又线程安全。 Mersenne Twister 是目前经过最广泛测试的随机数生成器之一。 但是,因为是完全确定性的,它不适用于所有目的,并且完全不适用于加密目的。

这个模块提供的函数实际上是 random.Random 类的隐藏实例的绑定方法。 你可以实例化自己的 Random 类实例以获取不共享状态的生成器。

如果你想使用自己设计的不同基础生成器,类 Random 也可以作为子类:在这种情况下,重载 random() 、 seed() 、 getstate() 以及 setstate() 方法。可选地,新生成器可以提供 getrandbits() 方法——这允许 randrange() 在任意大的范围内产生选择。

random 模块还提供 SystemRandom 类,它使用系统函数 os.urandom() 从操作系统提供的源生成随机数。

警告

不应将此模块的伪随机生成器用于安全目的。 有关安全性或加密用途,请参阅 secrets 模块。

参见

M. Matsumoto and T. Nishimura, "Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom number generator", ACM Transactions on Modeling and Computer Simulation Vol. 8, No. 1, January pp.3--30 1998.

Complementary-Multiply-with-Carry recipe 用于兼容的替代随机数发生器,具有长周期和相对简单的更新操作。

簿记功能

random.seed(a=Noneversion=2)

初始化随机数生成器。

如果 a 被省略或为 None ,则使用当前系统时间。 如果操作系统提供随机源,则使用它们而不是系统时间(有关可用性的详细信息,请参阅 os.urandom() 函数)。

如果 a 是 int 类型,则直接使用。

对于版本2(默认的),str 、 bytes 或 bytearray 对象转换为 int 并使用它的所有位。

对于版本1(用于从旧版本的Python再现随机序列),用于 str 和 bytes 的算法生成更窄的种子范围。

在 3.2 版更改: 已移至版本2方案,该方案使用字符串种子中的所有位。

在 3.11 版更改: seed 必须是下列类型之一: NoneType, int, float, str, bytes 或 bytearray。

random.getstate()

返回捕获生成器当前内部状态的对象。 这个对象可以传递给 setstate() 来恢复状态。

random.setstate(state)

state 应该是从之前调用 getstate() 获得的,并且 setstate() 将生成器的内部状态恢复到 getstate() 被调用时的状态。

用于字节数据的函数

random.randbytes(n)

生成 n 个随机字节。

此方法不可用于生成安全凭据。 那应当使用 secrets.token_bytes()。

3.9 新版功能.

整数用函数

random.randrange(stop)

random.randrange(startstop[, step])

返回从 range(start, stop, step) 随机选择的一个元素。

这大致等价于 choice(range(start, stop, step)) 但是支持任意大的取值范围并针对常见场景进行了优化。

该位置参数的模式与 range() 函数相匹配。

关键字参数不应被使用因为它们可能以预料之外的方式被解读。 例如 randrange(start=100) 会被解读为 randrange(0, 100, 1)

在 3.2 版更改: randrange() 在生成均匀分布的值方面更为复杂。 以前它使用了像 int(random()*n) 这样的形式,它可以产生稍微不均匀的分布。

在 3.12 版更改: 不再支持非整数类型的自动转换。 randrange(10.0) 和 randrange(Fraction(10, 1)) 之类的调用现在将会引发 TypeError。

random.randint(ab)

返回随机整数 N 满足 a <= N <= b。相当于 randrange(a, b+1)

random.getrandbits(k)

返回具有 k 个随机比特位的非负 Python 整数。 此方法随 Mersenne Twister 生成器一起提供,其他一些生成器也可能将其作为 API 的可选部分提供。 在可能的情况下,getrandbits() 会启用 randrange() 来处理任意大的区间。

在 3.9 版更改: 此方法现在接受零作为 k 的值。

序列用函数

random.choice(seq)

从非空序列 seq 返回一个随机元素。 如果 seq 为空,则引发 IndexError。

random.choices(populationweights=None*cum_weights=Nonek=1)

从 population 中有重复地随机选取元素,返回大小为 k 的元素列表。 如果 population 为空,则引发 IndexError。

如果指定了 weight 序列,则根据相对权重进行选择。 或者,如果给出 cum_weights 序列,则根据累积权重(可能使用 itertools.accumulate() 计算)进行选择。 例如,相对权重 [10, 5, 30, 5]``相当于累积权重``[10, 15, 45, 50]。 在内部,相对权重在进行选择之前会转换为累积权重,因此提供累积权重可以节省工作量。

如果既未指定 weight 也未指定 cum_weights ,则以相等的概率进行选择。 如果提供了权重序列,则它必须与 population 序列的长度相同。 一个 TypeError 指定了 weights 和 cum_weights 。

weights 或 cum_weights 可使用 random() 所返回的能与 float 值进行相互运算的任何数字类型(包括整数、浮点数、分数但不包括 decimal)。 权重值应当非负且为有限的数值。 如果所有的权重值均为零则会引发 ValueError。

对于给定的种子,具有相等加权的 choices() 函数通常产生与重复调用 choice() 不同的序列。 choices() 使用的算法使用浮点运算来实现内部一致性和速度。 choice() 使用的算法默认为重复选择的整数运算,以避免因舍入误差引起的小偏差。

3.6 新版功能.

在 3.9 版更改: 如果所有权重均为负值则将引发 ValueError。

random.shuffle(x)

就地将序列 x 随机打乱位置。

要改变一个不可变的序列并返回一个新的打乱列表,请使用 sample(x, k=len(x))

请注意,即使对于小的 len(x)x 的排列总数也可以快速增长,大于大多数随机数生成器的周期。 这意味着长序列的大多数排列永远不会产生。 例如,长度为2080的序列是可以在 Mersenne Twister 随机数生成器的周期内拟合的最大序列。

从 3.9 版起不建议使用,已在 3.11 版中移除: 可选形参 random

random.sample(populationk*counts=None)

返回从总体序列中选取的唯一元素的长度为 k 的列表。 用于无重复的随机抽样。

返回包含来自总体的元素的新列表,同时保持原始总体不变。 结果列表按选择顺序排列,因此所有子切片也将是有效的随机样本。 这允许抽奖获奖者(样本)被划分为大奖和第二名获胜者(子切片)。

总体成员不必是 hashable 或 unique 。 如果总体包含重复,则每次出现都是样本中可能的选择。

重复的元素可以一个个地直接列出,或使用可选的仅限关键字形参 counts 来指定。 例如,sample(['red', 'blue'], counts=[4, 2], k=5) 等价于 sample(['red', 'red', 'red', 'red', 'blue', 'blue'], k=5)

要从一系列整数中选择样本,请使用 range() 对象作为参数。 对于从大量人群中采样,这种方法特别快速且节省空间:sample(range(10000000), k=60) 。

如果样本大小大于总体大小,则引发 ValueError 。

在 3.9 版更改: 增加了 counts 形参。

在 3.11 版更改: population 必须为一个序列。 不再支持将集合自动转换为列表。

离散分布

以下函数会生成离散分布。

random.binomialvariate(n=1p=0.5)

二项式分布。 返回 n 次独立试验在每次试验的成功率为 p 时的成功次数:

在数学上等价于:

sum(random() < p for i in range(n))

试验次数 n 应为一个非负整数。 成功几率 p 的取值范围应为 0.0 <= p <= 1.0。 结果是一个 0 <= X <= n 范围内的整数。

3.12 新版功能.

实值分布

以下函数生成特定的实值分布。如常用数学实践中所使用的那样,函数形参以分布方程中的相应变量命名,大多数这些方程都可以在任何统计学教材中找到。

random.random()

返回 0.0 <= X < 1.0 范围内的下一个随机浮点数。

random.uniform(ab)

返回一个随机浮点数 N ,当 a <= b 时 a <= N <= b ,当 b < a 时 b <= N <= a 。

取决于等式 a + (b-a) * random() 中的浮点舍入,终点 b 可以包括或不包括在该范围内。

random.triangular(lowhighmode)

返回一个随机浮点数 N ,使得 low <= N <= high 并在这些边界之间使用指定的 mode 。 low 和 high 边界默认为零和一。 mode 参数默认为边界之间的中点,给出对称分布。

random.betavariate(alphabeta)

Beta 分布。 参数的条件是 alpha > 0 和 beta > 0。 返回值的范围介于 0 和 1 之间。

random.expovariate(lambd=1.0)

指数分布。 lambd 是 1.0 除以所需的平均值,它应该是非零的。 (该参数本应命名为 “lambda” ,但这是 Python 中的保留字。)如果 lambd 为正,则返回值的范围为 0 到正无穷大;如果 lambd 为负,则返回值从负无穷大到 0。

在 3.12 版更改: 添加了 lambd 的默认值。

random.gammavariate(alphabeta)

Gamma 分布。 (不是 gamma 函数!) shape 和 scale 形参,即 alpha 和 beta,必须为正值。 (调用规范有变动并且有些源码会将 'beta' 定义为逆向的 scale)。

概率分布函数是:

          x ** (alpha - 1) * math.exp(-x / beta)
pdf(x) =  --------------------------------------
            math.gamma(alpha) * beta ** alpha

random.gauss(mu=0.0sigma=1.0)

正态分布,也称高斯分布。 mu 为平均值,而 sigma 为标准差。 此函数要稍快于下面所定义的 normalvariate() 函数。

多线程注意事项:当两个线程同时调用此方法时,它们有可能将获得相同的返回值。 这可以通过三种办法来避免。 1) 让每个线程使用不同的随机数生成器实例。 2) 在所有调用外面加锁。 3) 改用速度较慢但是线程安全的 normalvariate() 函数。

在 3.11 版更改: 现在 mu 和 sigma 均有默认参数。

random.lognormvariate(musigma)

对数正态分布。 如果你采用这个分布的自然对数,你将得到一个正态分布,平均值为 mu 和标准差为 sigma 。 mu 可以是任何值,sigma 必须大于零。

random.normalvariate(mu=0.0sigma=1.0)

正态分布。 mu 是平均值,sigma 是标准差。

在 3.11 版更改: 现在 mu 和 sigma 均有默认参数。

random.vonmisesvariate(mukappa)

冯·米塞斯分布。 mu 是平均角度,以弧度表示,介于0和 2*pi 之间,kappa 是浓度参数,必须大于或等于零。 如果 kappa 等于零,则该分布在 0 到 2*pi 的范围内减小到均匀的随机角度。

random.paretovariate(alpha)

帕累托分布。 alpha 是形状参数。

random.weibullvariate(alphabeta)

威布尔分布。 alpha 是比例参数,beta 是形状参数。

替代生成器

class random.Random([seed])

该类实现了 random 模块所用的默认伪随机数生成器。

从 3.9 版起不建议使用,已在 3.11 版中移除: 之前 seed 可以是任何可哈希对象。 现在它被限制为: NoneType, int, float, str, bytes 或 bytearray。

class random.SystemRandom([seed])

使用 os.urandom() 函数的类,用从操作系统提供的源生成随机数。 这并非适用于所有系统。 也不依赖于软件状态,序列不可重现。 因此,seed() 方法没有效果而被忽略。 getstate() 和 setstate() 方法如果被调用则引发 NotImplementedError。

关于再现性的说明

有时能够重现伪随机数生成器给出的序列是很有用处的。 通过重用一个种子值,只要没有运行多线程,相同的序列就应当可在多次运行中重现。

大多数随机模块的算法和种子函数都会在 Python 版本中发生变化,但保证两个方面不会改变:

  • 如果添加了新的播种方法,则将提供向后兼容的播种机。

  • 当兼容的播种机被赋予相同的种子时,生成器的 random() 方法将继续产生相同的序列。

例子

基本示例:

>>>

>>> random()                             # Random float:  0.0 <= x < 1.0
0.37444887175646646

>>> uniform(2.5, 10.0)                   # Random float:  2.5 <= x <= 10.0
3.1800146073117523

>>> expovariate(1 / 5)                   # Interval between arrivals averaging 5 seconds
5.148957571865031

>>> randrange(10)                        # Integer from 0 to 9 inclusive
7

>>> randrange(0, 101, 2)                 # Even integer from 0 to 100 inclusive
26

>>> choice(['win', 'lose', 'draw'])      # Single random element from a sequence
'draw'

>>> deck = 'ace two three four'.split()
>>> shuffle(deck)                        # Shuffle a list
>>> deck
['four', 'two', 'ace', 'three']

>>> sample([10, 20, 30, 40, 50], k=4)    # Four samples without replacement
[40, 10, 50, 30]

模拟:

>>>

>>> # Six roulette wheel spins (weighted sampling with replacement)
>>> choices(['red', 'black', 'green'], [18, 18, 2], k=6)
['red', 'green', 'black', 'black', 'red', 'black']

>>> # Deal 20 cards without replacement from a deck
>>> # of 52 playing cards, and determine the proportion of cards
>>> # with a ten-value:  ten, jack, queen, or king.
>>> deal = sample(['tens', 'low cards'], counts=[16, 36], k=20)
>>> deal.count('tens') / 20
0.15

>>> # Estimate the probability of getting 5 or more heads from 7 spins
>>> # of a biased coin that settles on heads 60% of the time.
>>> sum(binomialvariate(n=7, p=0.6) >= 5 for i in range(10_000)) / 10_000
0.4169

>>> # Probability of the median of 5 samples being in middle two quartiles
>>> def trial():
...     return 2_500 <= sorted(choices(range(10_000), k=5))[2] < 7_500
...
>>> sum(trial() for i in range(10_000)) / 10_000
0.7958

statistical bootstrapping 的示例,使用重新采样和替换来估计一个样本的均值的置信区间:

# https://www.thoughtco.com/example-of-bootstrapping-3126155
from statistics import fmean as mean
from random import choices

data = [41, 50, 29, 37, 81, 30, 73, 63, 20, 35, 68, 22, 60, 31, 95]
means = sorted(mean(choices(data, k=len(data))) for i in range(100))
print(f'The sample mean of {mean(data):.1f} has a 90% confidence '
      f'interval from {means[5]:.1f} to {means[94]:.1f}')

使用 重新采样排列测试 来确定统计学显著性或者使用 p-值 来观察药物与安慰剂的作用之间差异的示例:

# Example from "Statistics is Easy" by Dennis Shasha and Manda Wilson
from statistics import fmean as mean
from random import shuffle

drug = [54, 73, 53, 70, 73, 68, 52, 65, 65]
placebo = [54, 51, 58, 44, 55, 52, 42, 47, 58, 46]
observed_diff = mean(drug) - mean(placebo)

n = 10_000
count = 0
combined = drug + placebo
for i in range(n):
    shuffle(combined)
    new_diff = mean(combined[:len(drug)]) - mean(combined[len(drug):])
    count += (new_diff >= observed_diff)

print(f'{n} label reshufflings produced only {count} instances with a difference')
print(f'at least as extreme as the observed difference of {observed_diff:.1f}.')
print(f'The one-sided p-value of {count / n:.4f} leads us to reject the null')
print(f'hypothesis that there is no difference between the drug and the placebo.')

多服务器队列的到达时间和服务交付模拟:

from heapq import heapify, heapreplace
from random import expovariate, gauss
from statistics import mean, quantiles

average_arrival_interval = 5.6
average_service_time = 15.0
stdev_service_time = 3.5
num_servers = 3

waits = []
arrival_time = 0.0
servers = [0.0] * num_servers  # time when each server becomes available
heapify(servers)
for i in range(1_000_000):
    arrival_time += expovariate(1.0 / average_arrival_interval)
    next_server_available = servers[0]
    wait = max(0.0, next_server_available - arrival_time)
    waits.append(wait)
    service_duration = max(0.0, gauss(average_service_time, stdev_service_time))
    service_completed = arrival_time + wait + service_duration
    heapreplace(servers, service_completed)

print(f'Mean wait: {mean(waits):.1f}   Max wait: {max(waits):.1f}')
print('Quartiles:', [round(q, 1) for q in quantiles(waits)])

参见

Statistics for Hackers Jake Vanderplas 撰写的视频教程,使用一些基本概念进行统计分析,包括模拟、抽样、洗牌和交叉验证。

Peter Norvig 编写的市场模拟 Economics Simulation 显示了此模块所提供的许多工具和分布(gauss, uniform, sample, betavariate, choice, triangular 和 randrange)的高效使用。

由 Peter Norvig 撰写的教程 A Concrete Introduction to Probability (using Python) 涵盖了概率论基础知识,如何编写模拟,以及如何使用 Python 进行数据分析。

例程

这些例程演示了如何有效地使用 itertools 模块中的组合迭代器进行随机选取:

def random_product(*args, repeat=1):
    "Random selection from itertools.product(*args, **kwds)"
    pools = [tuple(pool) for pool in args] * repeat
    return tuple(map(random.choice, pools))

def random_permutation(iterable, r=None):
    "Random selection from itertools.permutations(iterable, r)"
    pool = tuple(iterable)
    r = len(pool) if r is None else r
    return tuple(random.sample(pool, r))

def random_combination(iterable, r):
    "Random selection from itertools.combinations(iterable, r)"
    pool = tuple(iterable)
    n = len(pool)
    indices = sorted(random.sample(range(n), r))
    return tuple(pool[i] for i in indices)

def random_combination_with_replacement(iterable, r):
    "Choose r elements with replacement.  Order the result to match the iterable."
    # Result will be in set(itertools.combinations_with_replacement(iterable, r)).
    pool = tuple(iterable)
    n = len(pool)
    indices = sorted(random.choices(range(n), k=r))
    return tuple(pool[i] for i in indices)

默认的 random() 返回在 0.0 ≤ x < 1.0 范围内 2⁻⁵³ 的倍数。 所有这些数值间隔相等并能精确表示为 Python 浮点数。 但是在此间隔上有许多其他可表示浮点数是不可能的选择。 例如,0.05954861408025609 就不是 2⁻⁵³ 的整数倍。

以下规范程序采取了一种不同的方式。 在间隔上的所有浮点数都是可能的选择。 它们的尾数取值来自 2⁵² ≤ 尾数 < 2⁵³ 范围内整数的均匀分布。 指数取值则来自几何分布,其中小于 -53 的指数的出现频率为下一个较大指数的一半。

from random import Random
from math import ldexp

class FullRandom(Random):

    def random(self):
        mantissa = 0x10_0000_0000_0000 | self.getrandbits(52)
        exponent = -53
        x = 0
        while not x:
            x = self.getrandbits(32)
            exponent += x.bit_length() - 32
        return ldexp(mantissa, exponent)

该类中所有的 实值分布 都将使用新的方法:

>>>

>>> fr = FullRandom()
>>> fr.random()
0.05954861408025609
>>> fr.expovariate(0.25)
8.87925541791544

该规范程序在概念上等效于在 0.0 ≤ x < 1.0 范围内对所有 2⁻¹⁰⁷⁴ 的倍数进行选择的算法。 所有这样的数字间隔都相等,但大多必须向下舍入为最接近的 Python 浮点数表示形式。 (2⁻¹⁰⁷⁴ 这个数值是等于 math.ulp(0.0) 的未经正规化的最小正浮点数。)

参见

生成伪随机浮点数值 为 Allen B. Downey 所撰写的描述如何生成相比通过 random() 正常生成的数值更细粒度浮点数的论文。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/234755.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Leetcode—389.找不同【简单】

2023每日刷题&#xff08;五十五&#xff09; Leetcode—389.找不同 实现代码 char findTheDifference(char* s, char* t) {int len strlen(s);int len2 len 1;int a[26] {0};int b[26] {0};if(len 0) {return t[0];}for(int i 0; i < len; i) {int idx s[i] - a;…

neuq-acm预备队训练week 8 P1144 最短路计数

题目描述 给出一个 N 个顶点 M条边的无向无权图&#xff0c;顶点编号为 1∼N。问从顶点 1 开始&#xff0c;到其他每个点的最短路有几条。 题目限制 输入格式 第一行包含 22 个正整数 N,M&#xff0c;为图的顶点数与边数。 接下来 M 行&#xff0c;每行 2个正整数 x,y&…

101基于matlab的极限学习机ELM算法进行遥感图像分类

基于matlab的极限学习机ELM算法进行遥感图像分类&#xff0c;对所获取的遥感图片进行初步分类和最终分类。数据可更换自己的&#xff0c;程序已调通&#xff0c;可直接运行。

键盘打字盲打练习系列之成为大师——5

一.欢迎来到我的酒馆 盲打&#xff0c;成为大师&#xff01; 目录 一.欢迎来到我的酒馆二.关于盲打你需要知道三.值得收藏的练习打字网站 二.关于盲打你需要知道 盲打系列教程&#xff0c;终于写到终章了。。。一开始在看网上视频&#xff0c;看到up主熟练的打字技巧&#xff…

【机器学习】041_模型开发迭代过程

一、模型开发的一般步骤 1. 明确研究问题 确定问题的组成和结果&#xff0c;明晰问题是分类问题还是回归问题 2. 决定系统总体架构 ①理解数据&#xff1a;采集&#xff08;爬取&#xff09;数据&#xff0c;生成&#xff08;导入&#xff09;数据&#xff0c;进行数据清洗…

Unity 实现单例模式

目录 基本概念 饿汉模式(推荐) 懒汉模式&#xff1a; 基本概念 单例模式&#xff1a;类只有一个实例&#xff0c;一般使用static来实现单例模式&#xff1b; 比如&#xff1a;有一个Test类,实现了单例&#xff0c;假设这个唯一的实例名为SingTonle,实例在类内被实现并被stat…

【KCC@南京】KCC南京“数字经济-开源行”活动回顾录

11月26日&#xff0c;由KCC南京、中科南京软件研究所、傲空间、PowerData联合主办的 KCC南京“数字经济-开源行” 的活动已圆满结束。此次活动&#xff0c;3 场主题研讨&#xff0c;11 场分享&#xff0c;现场参会人数 60&#xff0c;线上直播观看 3000&#xff0c;各地小伙伴从…

代码随想录刷题题Day9

刷题的第九天&#xff0c;希望自己能够不断坚持下去&#xff0c;迎来蜕变。&#x1f600;&#x1f600;&#x1f600; 刷题语言&#xff1a;C / Python Day9 任务 ● 20. 有效的括号 ● 1047. 删除字符串中的所有相邻重复项 ● 150. 逆波兰表达式求值 1 有效的括号 代码随想录…

【设计模式--结构型--桥接模式】

设计模式--结构型--桥接模式 桥接&#xff08;Bridge&#xff09;模式定义结构案例好处使用场景 桥接&#xff08;Bridge&#xff09;模式 定义 将抽象与实现分离&#xff0c;使他们可以独立变化。它是用组合关系代替继承关系来实现&#xff0c;从而降低了抽象和实现这两个维…

轻量封装WebGPU渲染系统示例<46>- 材质组装管线(MaterialPipeline)灯光、阴影、雾以及多Pass(源码)

当前示例源码github地址: https://github.com/vilyLei/voxwebgpu/blob/feature/material/src/voxgpu/sample/MaterialPipelineMultiPasses.ts 当前示例运行效果: 此示例基于此渲染系统实现&#xff0c;当前示例TypeScript源码如下&#xff1a; export class MaterialPipelin…

MySQL行锁范围分析(行锁、间隙锁、临键锁)

MySQL 中锁的概念 排它锁&#xff08;Exclusive Lock&#xff09; X 锁&#xff0c;也称为写锁&#xff0c;若事务T对对象A加上X锁&#xff0c;则只允许T读取和修改A&#xff0c;其他任何事物都不能再对A 加任何锁&#xff0c;直到T释放A上的锁。 SELECT…FOR UPDATE 对读取的…

公务员国考省考小白需知

文章目录&#xff1a; 一&#xff1a;分类 1.国考 2.省考 二&#xff1a;必备途径 1.相关网站 1.1 官网 1.1.1 必须知道的 1.1.2 比较好用的 1.1.3 事业单位的 1.2 机构 ​​1.3 时事 ​​1.4 资源 1.5 题库 1.6 真题 ​2.相关公主号 3.应用 4.群聊如何找 三…

Jenkins参数化构建及代码发布

如何使用gitlab--web端可以观看此篇教程 https://blog.csdn.net/m0_59933574/article/details/134528050?spm1001.2014.3001.5502https://blog.csdn.net/m0_59933574/article/details/134528050?spm1001.2014.3001.5502 整体思路 依赖环境及工具 Git Centos7及以上 Gitla…

【数据结构高阶】红黑树

目录 一、红黑树的概念 二、红黑树的性质 2.1 红黑树与AVL树的比较 三、红黑树的实现 3.1 红黑树节点的定义 3.2 数据的插入 3.2.1 红黑树的调整思路 3.2.1.1 cur为红&#xff0c;f为红&#xff0c;g为黑&#xff0c;u存在且为红 3.2.1.2 cur为红&#xff0c;f为红&am…

php实现截取姓名中的第一个字作为头像的实战记录

php 截取中文字符串第一个字 substr 函数 在 PHP 中&#xff0c;使用 substr 函数来截取中文字符串的第一个字。由于 PHP 默认的字符编码是 UTF-8&#xff0c;它可以正确处理中文字符。 $chineseString "你好世界"; $firstChar substr($chineseString, 0, 1); e…

【小白专用】Apache2.4+PHP8.3+MYSQL的配置

1.下载PHP和Apache 1、PHP下载 PHP For Windows: Binaries and sources Releases 注意&#xff1a; 1.使用Apache作为服务器的话&#xff0c;一定要下载Thread Safe的&#xff0c;否则没有php8apache2_4.dll这个文件&#xff0c; 如果使用IIS的请下载 NON Tread safe的 2.如果…

简单聊聊使用lombok 的争议

大家好&#xff0c;我是G探险者。 项目里&#xff0c;因为我使用了Lombok插件&#xff0c;然后代码走查的时候被领导点名了。 我心想&#xff0c;这么好用的插件&#xff0c;为啥不推广呢&#xff0c;整天写那些烦人的setter&#xff0c;getter方法就不嫌烦么&#xff1f; 领导…

[足式机器人]Part4 南科大高等机器人控制课 Ch05 Instantaneous Velocity of Moving Frames

本文仅供学习使用 本文参考&#xff1a; B站&#xff1a;CLEAR_LAB 笔者带更新-运动学 课程主讲教师&#xff1a; Prof. Wei Zhang 南科大高等机器人控制课 Ch05 Instantaneous Velocity of Moving Frames 1.Instantanenous Velocity of Rotating Frames2.Instantanenous Veloc…

计算机视觉 基于Open3D了解用于网格和点云邻域分析的KD树和八叉树

一、简述 距离计算和邻域分析是理解网格和点云的形状、结构和特征的重要工具。我们这里要基于一些3D库来提取基于距离的信息并将其可视化。 与深度图或体素相比,点云和网格表示 3D 空间中的非结构化数据。点由它们的 (X, Y, Z) 坐标表示,在 3D 空间中可能彼此靠近的两…

Vue3:表格单元格内容由:图标+具体内容 构成

一、背景 在Vue3项目中&#xff0c;想让单元格的内容是由 &#xff1a;图标具体内容组成的&#xff0c;类似以下效果&#xff1a; 二、图标 Element-Plus 可以在Element-Plus里面找是否有符合需求的图标iconfont 如果Element-Plus里面没有符合需求的&#xff0c;也可以在这…