源码: Lib/random.py
该模块实现了各种分布的伪随机数生成器。
对于整数,从范围中有统一的选择。 对于序列,存在随机元素的统一选择、用于生成列表的随机排列的函数、以及用于随机抽样而无需替换的函数。
在实数轴上,有计算均匀、正态(高斯)、对数正态、负指数、伽马和贝塔分布的函数。 为了生成角度分布,可以使用 von Mises 分布。
几乎所有模块函数都依赖于基本函数 random(),它在左开右闭区间 0.0 <= X < 1.0
内均匀生成随机浮点数。 Python 使用 Mersenne Twister 作为核心生成器。 它产生 53 位精度的浮点数并且周期为 2**19937-1。 其在 C 中的这个底层实现既快速又线程安全。 Mersenne Twister 是目前经过最广泛测试的随机数生成器之一。 但是,因为是完全确定性的,它不适用于所有目的,并且完全不适用于加密目的。
这个模块提供的函数实际上是 random.Random 类的隐藏实例的绑定方法。 你可以实例化自己的 Random 类实例以获取不共享状态的生成器。
如果你想使用自己设计的不同基础生成器,类 Random 也可以作为子类:在这种情况下,重载 random()
、 seed()
、 getstate()
以及 setstate()
方法。可选地,新生成器可以提供 getrandbits()
方法——这允许 randrange() 在任意大的范围内产生选择。
random 模块还提供 SystemRandom 类,它使用系统函数 os.urandom() 从操作系统提供的源生成随机数。
警告
不应将此模块的伪随机生成器用于安全目的。 有关安全性或加密用途,请参阅 secrets 模块。
参见
M. Matsumoto and T. Nishimura, "Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom number generator", ACM Transactions on Modeling and Computer Simulation Vol. 8, No. 1, January pp.3--30 1998.
Complementary-Multiply-with-Carry recipe 用于兼容的替代随机数发生器,具有长周期和相对简单的更新操作。
簿记功能
random.seed(a=None, version=2)
初始化随机数生成器。
如果 a 被省略或为 None
,则使用当前系统时间。 如果操作系统提供随机源,则使用它们而不是系统时间(有关可用性的详细信息,请参阅 os.urandom() 函数)。
如果 a 是 int 类型,则直接使用。
对于版本2(默认的),str 、 bytes 或 bytearray 对象转换为 int 并使用它的所有位。
对于版本1(用于从旧版本的Python再现随机序列),用于 str 和 bytes 的算法生成更窄的种子范围。
在 3.2 版更改: 已移至版本2方案,该方案使用字符串种子中的所有位。
在 3.11 版更改: seed 必须是下列类型之一: NoneType, int, float, str, bytes 或 bytearray。
random.getstate()
返回捕获生成器当前内部状态的对象。 这个对象可以传递给 setstate() 来恢复状态。
random.setstate(state)
state 应该是从之前调用 getstate() 获得的,并且 setstate() 将生成器的内部状态恢复到 getstate() 被调用时的状态。
用于字节数据的函数
random.randbytes(n)
生成 n 个随机字节。
此方法不可用于生成安全凭据。 那应当使用 secrets.token_bytes()。
3.9 新版功能.
整数用函数
random.randrange(stop)
random.randrange(start, stop[, step])
返回从 range(start, stop, step)
随机选择的一个元素。
这大致等价于 choice(range(start, stop, step))
但是支持任意大的取值范围并针对常见场景进行了优化。
该位置参数的模式与 range() 函数相匹配。
关键字参数不应被使用因为它们可能以预料之外的方式被解读。 例如 randrange(start=100)
会被解读为 randrange(0, 100, 1)
。
在 3.2 版更改: randrange() 在生成均匀分布的值方面更为复杂。 以前它使用了像 int(random()*n)
这样的形式,它可以产生稍微不均匀的分布。
在 3.12 版更改: 不再支持非整数类型的自动转换。 randrange(10.0)
和 randrange(Fraction(10, 1))
之类的调用现在将会引发 TypeError。
random.randint(a, b)
返回随机整数 N 满足 a <= N <= b
。相当于 randrange(a, b+1)
。
random.getrandbits(k)
返回具有 k 个随机比特位的非负 Python 整数。 此方法随 Mersenne Twister 生成器一起提供,其他一些生成器也可能将其作为 API 的可选部分提供。 在可能的情况下,getrandbits() 会启用 randrange() 来处理任意大的区间。
在 3.9 版更改: 此方法现在接受零作为 k 的值。
序列用函数
random.choice(seq)
从非空序列 seq 返回一个随机元素。 如果 seq 为空,则引发 IndexError。
random.choices(population, weights=None, *, cum_weights=None, k=1)
从 population 中有重复地随机选取元素,返回大小为 k 的元素列表。 如果 population 为空,则引发 IndexError。
如果指定了 weight 序列,则根据相对权重进行选择。 或者,如果给出 cum_weights 序列,则根据累积权重(可能使用 itertools.accumulate() 计算)进行选择。 例如,相对权重 [10, 5, 30, 5]``相当于累积权重``[10, 15, 45, 50]
。 在内部,相对权重在进行选择之前会转换为累积权重,因此提供累积权重可以节省工作量。
如果既未指定 weight 也未指定 cum_weights ,则以相等的概率进行选择。 如果提供了权重序列,则它必须与 population 序列的长度相同。 一个 TypeError 指定了 weights 和 cum_weights 。
weights 或 cum_weights 可使用 random() 所返回的能与 float 值进行相互运算的任何数字类型(包括整数、浮点数、分数但不包括 decimal)。 权重值应当非负且为有限的数值。 如果所有的权重值均为零则会引发 ValueError。
对于给定的种子,具有相等加权的 choices() 函数通常产生与重复调用 choice() 不同的序列。 choices() 使用的算法使用浮点运算来实现内部一致性和速度。 choice() 使用的算法默认为重复选择的整数运算,以避免因舍入误差引起的小偏差。
3.6 新版功能.
在 3.9 版更改: 如果所有权重均为负值则将引发 ValueError。
random.shuffle(x)
就地将序列 x 随机打乱位置。
要改变一个不可变的序列并返回一个新的打乱列表,请使用 sample(x, k=len(x))
。
请注意,即使对于小的 len(x)
,x 的排列总数也可以快速增长,大于大多数随机数生成器的周期。 这意味着长序列的大多数排列永远不会产生。 例如,长度为2080的序列是可以在 Mersenne Twister 随机数生成器的周期内拟合的最大序列。
从 3.9 版起不建议使用,已在 3.11 版中移除: 可选形参 random。
random.sample(population, k, *, counts=None)
返回从总体序列中选取的唯一元素的长度为 k 的列表。 用于无重复的随机抽样。
返回包含来自总体的元素的新列表,同时保持原始总体不变。 结果列表按选择顺序排列,因此所有子切片也将是有效的随机样本。 这允许抽奖获奖者(样本)被划分为大奖和第二名获胜者(子切片)。
总体成员不必是 hashable 或 unique 。 如果总体包含重复,则每次出现都是样本中可能的选择。
重复的元素可以一个个地直接列出,或使用可选的仅限关键字形参 counts 来指定。 例如,sample(['red', 'blue'], counts=[4, 2], k=5)
等价于 sample(['red', 'red', 'red', 'red', 'blue', 'blue'], k=5)
。
要从一系列整数中选择样本,请使用 range() 对象作为参数。 对于从大量人群中采样,这种方法特别快速且节省空间:sample(range(10000000), k=60)
。
如果样本大小大于总体大小,则引发 ValueError 。
在 3.9 版更改: 增加了 counts 形参。
在 3.11 版更改: population 必须为一个序列。 不再支持将集合自动转换为列表。
离散分布
以下函数会生成离散分布。
random.binomialvariate(n=1, p=0.5)
二项式分布。 返回 n 次独立试验在每次试验的成功率为 p 时的成功次数:
在数学上等价于:
sum(random() < p for i in range(n))
试验次数 n 应为一个非负整数。 成功几率 p 的取值范围应为 0.0 <= p <= 1.0
。 结果是一个 0 <= X <= n
范围内的整数。
3.12 新版功能.
实值分布
以下函数生成特定的实值分布。如常用数学实践中所使用的那样,函数形参以分布方程中的相应变量命名,大多数这些方程都可以在任何统计学教材中找到。
random.random()
返回 0.0 <= X < 1.0
范围内的下一个随机浮点数。
random.uniform(a, b)
返回一个随机浮点数 N ,当 a <= b
时 a <= N <= b
,当 b < a
时 b <= N <= a
。
取决于等式 a + (b-a) * random()
中的浮点舍入,终点 b
可以包括或不包括在该范围内。
random.triangular(low, high, mode)
返回一个随机浮点数 N ,使得 low <= N <= high
并在这些边界之间使用指定的 mode 。 low 和 high 边界默认为零和一。 mode 参数默认为边界之间的中点,给出对称分布。
random.betavariate(alpha, beta)
Beta 分布。 参数的条件是 alpha > 0
和 beta > 0
。 返回值的范围介于 0 和 1 之间。
random.expovariate(lambd=1.0)
指数分布。 lambd 是 1.0 除以所需的平均值,它应该是非零的。 (该参数本应命名为 “lambda” ,但这是 Python 中的保留字。)如果 lambd 为正,则返回值的范围为 0 到正无穷大;如果 lambd 为负,则返回值从负无穷大到 0。
在 3.12 版更改: 添加了 lambd
的默认值。
random.gammavariate(alpha, beta)
Gamma 分布。 (不是 gamma 函数!) shape 和 scale 形参,即 alpha 和 beta,必须为正值。 (调用规范有变动并且有些源码会将 'beta' 定义为逆向的 scale)。
概率分布函数是:
x ** (alpha - 1) * math.exp(-x / beta) pdf(x) = -------------------------------------- math.gamma(alpha) * beta ** alpha
random.gauss(mu=0.0, sigma=1.0)
正态分布,也称高斯分布。 mu 为平均值,而 sigma 为标准差。 此函数要稍快于下面所定义的 normalvariate() 函数。
多线程注意事项:当两个线程同时调用此方法时,它们有可能将获得相同的返回值。 这可以通过三种办法来避免。 1) 让每个线程使用不同的随机数生成器实例。 2) 在所有调用外面加锁。 3) 改用速度较慢但是线程安全的 normalvariate() 函数。
在 3.11 版更改: 现在 mu 和 sigma 均有默认参数。
random.lognormvariate(mu, sigma)
对数正态分布。 如果你采用这个分布的自然对数,你将得到一个正态分布,平均值为 mu 和标准差为 sigma 。 mu 可以是任何值,sigma 必须大于零。
random.normalvariate(mu=0.0, sigma=1.0)
正态分布。 mu 是平均值,sigma 是标准差。
在 3.11 版更改: 现在 mu 和 sigma 均有默认参数。
random.vonmisesvariate(mu, kappa)
冯·米塞斯分布。 mu 是平均角度,以弧度表示,介于0和 2*pi 之间,kappa 是浓度参数,必须大于或等于零。 如果 kappa 等于零,则该分布在 0 到 2*pi 的范围内减小到均匀的随机角度。
random.paretovariate(alpha)
帕累托分布。 alpha 是形状参数。
random.weibullvariate(alpha, beta)
威布尔分布。 alpha 是比例参数,beta 是形状参数。
替代生成器
class random.Random([seed])
该类实现了 random 模块所用的默认伪随机数生成器。
从 3.9 版起不建议使用,已在 3.11 版中移除: 之前 seed 可以是任何可哈希对象。 现在它被限制为: NoneType
, int, float, str, bytes 或 bytearray。
class random.SystemRandom([seed])
使用 os.urandom() 函数的类,用从操作系统提供的源生成随机数。 这并非适用于所有系统。 也不依赖于软件状态,序列不可重现。 因此,seed() 方法没有效果而被忽略。 getstate() 和 setstate() 方法如果被调用则引发 NotImplementedError。
关于再现性的说明
有时能够重现伪随机数生成器给出的序列是很有用处的。 通过重用一个种子值,只要没有运行多线程,相同的序列就应当可在多次运行中重现。
大多数随机模块的算法和种子函数都会在 Python 版本中发生变化,但保证两个方面不会改变:
-
如果添加了新的播种方法,则将提供向后兼容的播种机。
-
当兼容的播种机被赋予相同的种子时,生成器的
random()
方法将继续产生相同的序列。
例子
基本示例:
>>>
>>> random() # Random float: 0.0 <= x < 1.0 0.37444887175646646 >>> uniform(2.5, 10.0) # Random float: 2.5 <= x <= 10.0 3.1800146073117523 >>> expovariate(1 / 5) # Interval between arrivals averaging 5 seconds 5.148957571865031 >>> randrange(10) # Integer from 0 to 9 inclusive 7 >>> randrange(0, 101, 2) # Even integer from 0 to 100 inclusive 26 >>> choice(['win', 'lose', 'draw']) # Single random element from a sequence 'draw' >>> deck = 'ace two three four'.split() >>> shuffle(deck) # Shuffle a list >>> deck ['four', 'two', 'ace', 'three'] >>> sample([10, 20, 30, 40, 50], k=4) # Four samples without replacement [40, 10, 50, 30]
模拟:
>>>
>>> # Six roulette wheel spins (weighted sampling with replacement) >>> choices(['red', 'black', 'green'], [18, 18, 2], k=6) ['red', 'green', 'black', 'black', 'red', 'black'] >>> # Deal 20 cards without replacement from a deck >>> # of 52 playing cards, and determine the proportion of cards >>> # with a ten-value: ten, jack, queen, or king. >>> deal = sample(['tens', 'low cards'], counts=[16, 36], k=20) >>> deal.count('tens') / 20 0.15 >>> # Estimate the probability of getting 5 or more heads from 7 spins >>> # of a biased coin that settles on heads 60% of the time. >>> sum(binomialvariate(n=7, p=0.6) >= 5 for i in range(10_000)) / 10_000 0.4169 >>> # Probability of the median of 5 samples being in middle two quartiles >>> def trial(): ... return 2_500 <= sorted(choices(range(10_000), k=5))[2] < 7_500 ... >>> sum(trial() for i in range(10_000)) / 10_000 0.7958
statistical bootstrapping 的示例,使用重新采样和替换来估计一个样本的均值的置信区间:
# https://www.thoughtco.com/example-of-bootstrapping-3126155 from statistics import fmean as mean from random import choices data = [41, 50, 29, 37, 81, 30, 73, 63, 20, 35, 68, 22, 60, 31, 95] means = sorted(mean(choices(data, k=len(data))) for i in range(100)) print(f'The sample mean of {mean(data):.1f} has a 90% confidence ' f'interval from {means[5]:.1f} to {means[94]:.1f}')
使用 重新采样排列测试 来确定统计学显著性或者使用 p-值 来观察药物与安慰剂的作用之间差异的示例:
# Example from "Statistics is Easy" by Dennis Shasha and Manda Wilson from statistics import fmean as mean from random import shuffle drug = [54, 73, 53, 70, 73, 68, 52, 65, 65] placebo = [54, 51, 58, 44, 55, 52, 42, 47, 58, 46] observed_diff = mean(drug) - mean(placebo) n = 10_000 count = 0 combined = drug + placebo for i in range(n): shuffle(combined) new_diff = mean(combined[:len(drug)]) - mean(combined[len(drug):]) count += (new_diff >= observed_diff) print(f'{n} label reshufflings produced only {count} instances with a difference') print(f'at least as extreme as the observed difference of {observed_diff:.1f}.') print(f'The one-sided p-value of {count / n:.4f} leads us to reject the null') print(f'hypothesis that there is no difference between the drug and the placebo.')
多服务器队列的到达时间和服务交付模拟:
from heapq import heapify, heapreplace from random import expovariate, gauss from statistics import mean, quantiles average_arrival_interval = 5.6 average_service_time = 15.0 stdev_service_time = 3.5 num_servers = 3 waits = [] arrival_time = 0.0 servers = [0.0] * num_servers # time when each server becomes available heapify(servers) for i in range(1_000_000): arrival_time += expovariate(1.0 / average_arrival_interval) next_server_available = servers[0] wait = max(0.0, next_server_available - arrival_time) waits.append(wait) service_duration = max(0.0, gauss(average_service_time, stdev_service_time)) service_completed = arrival_time + wait + service_duration heapreplace(servers, service_completed) print(f'Mean wait: {mean(waits):.1f} Max wait: {max(waits):.1f}') print('Quartiles:', [round(q, 1) for q in quantiles(waits)])
参见
Statistics for Hackers Jake Vanderplas 撰写的视频教程,使用一些基本概念进行统计分析,包括模拟、抽样、洗牌和交叉验证。
Peter Norvig 编写的市场模拟 Economics Simulation 显示了此模块所提供的许多工具和分布(gauss, uniform, sample, betavariate, choice, triangular 和 randrange)的高效使用。
由 Peter Norvig 撰写的教程 A Concrete Introduction to Probability (using Python) 涵盖了概率论基础知识,如何编写模拟,以及如何使用 Python 进行数据分析。
例程
这些例程演示了如何有效地使用 itertools 模块中的组合迭代器进行随机选取:
def random_product(*args, repeat=1): "Random selection from itertools.product(*args, **kwds)" pools = [tuple(pool) for pool in args] * repeat return tuple(map(random.choice, pools)) def random_permutation(iterable, r=None): "Random selection from itertools.permutations(iterable, r)" pool = tuple(iterable) r = len(pool) if r is None else r return tuple(random.sample(pool, r)) def random_combination(iterable, r): "Random selection from itertools.combinations(iterable, r)" pool = tuple(iterable) n = len(pool) indices = sorted(random.sample(range(n), r)) return tuple(pool[i] for i in indices) def random_combination_with_replacement(iterable, r): "Choose r elements with replacement. Order the result to match the iterable." # Result will be in set(itertools.combinations_with_replacement(iterable, r)). pool = tuple(iterable) n = len(pool) indices = sorted(random.choices(range(n), k=r)) return tuple(pool[i] for i in indices)
默认的 random() 返回在 0.0 ≤ x < 1.0 范围内 2⁻⁵³ 的倍数。 所有这些数值间隔相等并能精确表示为 Python 浮点数。 但是在此间隔上有许多其他可表示浮点数是不可能的选择。 例如,0.05954861408025609
就不是 2⁻⁵³ 的整数倍。
以下规范程序采取了一种不同的方式。 在间隔上的所有浮点数都是可能的选择。 它们的尾数取值来自 2⁵² ≤ 尾数 < 2⁵³ 范围内整数的均匀分布。 指数取值则来自几何分布,其中小于 -53 的指数的出现频率为下一个较大指数的一半。
from random import Random from math import ldexp class FullRandom(Random): def random(self): mantissa = 0x10_0000_0000_0000 | self.getrandbits(52) exponent = -53 x = 0 while not x: x = self.getrandbits(32) exponent += x.bit_length() - 32 return ldexp(mantissa, exponent)
该类中所有的 实值分布 都将使用新的方法:
>>>
>>> fr = FullRandom() >>> fr.random() 0.05954861408025609 >>> fr.expovariate(0.25) 8.87925541791544
该规范程序在概念上等效于在 0.0 ≤ x < 1.0 范围内对所有 2⁻¹⁰⁷⁴ 的倍数进行选择的算法。 所有这样的数字间隔都相等,但大多必须向下舍入为最接近的 Python 浮点数表示形式。 (2⁻¹⁰⁷⁴ 这个数值是等于 math.ulp(0.0)
的未经正规化的最小正浮点数。)
参见
生成伪随机浮点数值 为 Allen B. Downey 所撰写的描述如何生成相比通过 random() 正常生成的数值更细粒度浮点数的论文。