【路由协议】使用按需路由协议和数据包注入的即时网络模拟传递率(PDR)、总消耗能量和节点消耗能量以及延迟研究(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

使用按需路由协议和数据包注入的即时网络模拟。该模拟提供数据包传递率(PDR)、总消耗能量和节点消耗能量以及延迟。

按需路由协议是一种基于需求的路由协议,它只在需要传输数据时才选择合适的路径进行传输,而不是预先建立路径。数据包注入是一种常见的实验方法,通过向网络中注入数据包来模拟网络传输。

研究即时网络中使用按需路由协议和数据包注入的传递率(Packet Delivery Ratio,PDR),可以评估网络的可靠性。PDR表示成功传递到目的地的数据包比例,可以通过统计发送的数据包和接收到的数据包数量来计算。

同时,研究总消耗能量和节点消耗能量可以评估网络的能源效率。总消耗能量指的是整个网络在传输过程中所消耗的能量,而节点消耗能量指的是每个节点在传输过程中所消耗的能量。这些能量消耗可以通过模拟实验或者实际测试来获得。

此外,研究延迟可以评估网络的传输效率。延迟是指从数据包发送到数据包到达目的地所经过的时间。可以通过记录数据包的发送时间和到达时间来计算延迟。

综上所述,使用按需路由协议和数据包注入的即时网络模拟可以研究传递率、能量消耗和延迟等关键指标,从而评估网络的可靠性、能源效率和传输效率。这些研究可以为网络设计和优化提供重要的参考。

📚2 运行结果

 

 

 

 

部分代码:

global position N
N=50; % Number of Nodes in network
position=randsrc(2,N,1:1000); % set position of each node in network 1000x1000 meters
S=1; % Source Node
D=50; % Destination Node
Net=zeros(N);
range=250; % Radio propagation range of each node (meter)
plot(position(1,:),position(2,:),'ro');
title('Network');
xlabel('x (m)');
ylabel('y (m)');
grid();
hold on

for i=1:N
    for j=1:N
        if i~=j && dist(position(:,i)',position(:,j))<=range
            Net(i,j)=1; %Connection between 2 nodes (i,j)
            line([position(1,i),position(1,j)],[position(2,i),position(2,j)]);
        end
    end
end
plot(position(1,S),position(2,S),'ks');
plot(position(1,D),position(2,D),'g^');

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]徐海涛.水下传感网络能耗均衡的路由协议研究[D].桂林电子科技大学,2020.

[2]黄浩军.无线Ad Hoc网络中能量优化的路由协议研究[D].电子科技大学,2012.DOI:CNKI:CDMD:1.1012.473961.

[3]张倩玉.移动Ad Hoc网络中基于能量耗散率的ODMRP路由协议的研究与实现[D].东北大学,2011.DOI:10.7666/d.J0119753.

🌈4 Matlab代码实现

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/80341.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

opencv直方图与模板匹配

import cv2 #opencv读取的格式是BGR import numpy as np import matplotlib.pyplot as plt#Matplotlib是RGB %matplotlib inline def cv_show(img,name):cv2.imshow(name,img)cv2.waitKey()cv2.destroyAllWindows() 直方图 cv2.calcHist(images,channels,mask,histSize,ran…

『C语言』数据在内存中的存储规则

前言 小羊近期已经将C语言初阶学习内容与铁汁们分享完成&#xff0c;接下来小羊会继续追更C语言进阶相关知识&#xff0c;小伙伴们坐好板凳&#xff0c;拿起笔开始上课啦~ 一、数据类型的介绍 我们目前已经学了基本的内置类型&#xff1a; char //字符数据类型 short …

如何使用Redis实现附近商家查询

导读 在日常生活中&#xff0c;我们经常能看见查询附近商家的功能。 常见的场景有&#xff0c;比如你在点外卖的时候&#xff0c;就可能需要按照距离查询附近几百米或者几公里的商家。 本文将介绍如何使用Redis实现按照距离查询附近商户的功能&#xff0c;并以SpringBoot项目…

面试之快速学习STL- vector

1. vector底层实现机制刨析&#xff1a; 简述&#xff1a;使用三个迭代器表示的&#xff1a; &#xfffc; 这也就解释了&#xff0c;为什么 vector 容器在进行扩容后&#xff0c;与其相关的指针、引用以及迭代器可能会失效的原因。 insert 整体向后移 erase 整体向前移…

科技云报道:算力之战,英伟达再度释放AI“炸弹”

科技云报道原创。 近日&#xff0c;在计算机图形学顶会SIGGRAPH 2023现场&#xff0c;英伟达再度释放深夜“炸弹”&#xff0c;大模型专用芯片迎来升级版本。 英伟达在会上发布了新一代GH200 Grace Hopper平台&#xff0c;该平台依托于搭载全球首款搭载HBM3e处理器的新型Grac…

优于立方复杂度的 Rust 中矩阵乘法

优于立方复杂度的 Rust 中矩阵乘法 迈克克维特 跟随 发表于 更好的编程 6 分钟阅读 7月 <> 143 中途&#xff1a;三次矩阵乘法 一、说明 几年前&#xff0c;我在 C 年编写了 Strassen 矩阵乘法算法的实现&#xff0c;最近在 Rust 中重新实现了它&#xff0c;因为我继续…

16、可重入锁+设计模式

可重入锁设计模式 while判断并自旋重试获取锁setnx含自然过期时间Lua脚本官网删除锁命令但不能保证可重如 问题&#xff0c;如何兼顾锁的可重入性问题&#xff1f; 可重入锁 可重入锁又名递归锁 是指在同一个线程在外层方法获取锁的时候&#xff0c;再进入该线程的内层方法…

【JVM】对String::intern()方法深入详解(JDK7及以上)

文章目录 1、什么是intern&#xff1f;2、经典例题解释例1例2例3 1、什么是intern&#xff1f; String::intern()是一个本地方法&#xff0c;它的作用是如果字符串常量池中已经包含一个等于此String对象的字符串&#xff0c;则返回代表池中这个字符串的String对象的引用&#…

Unable to find resource t64.exe in package pip._vendor.distlib报错问题解决

Unable to find resource t64.exe in package pip._vendor.distlib报错问题解决 问题报错具体内容具体解决方案解决方法一解决方法二 问题报错具体内容 想要对python的版本进行一个升级,使用如下语句 python -m pip install --upgrade pip出现如下报错 Unable to find reso…

OpenZFS 2.2 发布 RC3,支持 Linux 6.4

导读之前的 OpenZFS 2.2 候选版本已致力于实现与 Linux 6.4 内核的兼容性&#xff0c;而在 2.2-rc3 中&#xff0c;Linux 6.4 支持的元跟踪器已标记为已完成。 OpenZFS 2.2 发布了第 3 个 RC 版本。 之前的 OpenZFS 2.2 候选版本已致力于实现与 Linux 6.4 内核的兼容性&#x…

深入理解内存 —— 函数栈帧的创建与销毁

前言 一位优秀的程序员&#xff0c;必须对内存的分布有深刻的理解&#xff0c;在初学编程的时候&#xff0c;往往有诸如以下很多问题困扰着初学者&#xff0c;而通过今天的分享&#xff0c;我们就可以通过自己的观察&#xff0c;将这些问题统统解决掉 局部变量是怎么创建的&…

Python Opencv实践 - 图像仿射变换

import cv2 as cv import numpy as np import matplotlib.pyplot as pltimg cv.imread("../SampleImages/pomeranian.png", cv.IMREAD_COLOR) rows,cols img.shape[:2] print(img.shape[:2])#使用getAffineTransform来获得仿射变换的矩阵M #cv.getAffineTransform(…

Microsoft ISA服务器配置及日志分析

Microsoft ISA 分析器工具&#xff0c;可分析 Microsoft ISA 服务器&#xff08;或 Forefront 威胁管理网关服务器&#xff09;的日志并生成安全和流量报告。支持来自 Microsoft ISA 服务器组件的以下日志&#xff1a; 数据包过滤器ISA 服务器防火墙服务ISA 服务器网络代理服务…

图片合成动图怎么弄?gif图制作的简单方法

许多鬼畜的表情包其实是用图片合成gif完成的&#xff0c;那么怎么将图片转gif呢&#xff1f;使用GIF中文网的gif合成&#xff08;https://www.gif.cn&#xff09;功能&#xff0c;打开浏览器就可以完成gif图片制作&#xff0c;非常简单方便&#xff0c;一起来了解一下吧。 打开…

智安网络|深入比较:Sass系统与源码系统的差异及选择指南

随着前端开发的快速发展&#xff0c;开发人员需要使用更高效和灵活的工具来处理样式表。在这个领域&#xff0c;Sass系统和源码系统是两个备受关注的选项。 Sass系统 Sass&#xff08;Syntactically Awesome Style Sheets&#xff09;是一种CSS预处理器&#xff0c;它扩展了CS…

Lnton羚通关于【PyTorch】教程:torchvision 目标检测微调

torchvision 目标检测微调 本教程将使用Penn-Fudan Database for Pedestrian Detection and Segmentation 微调 预训练的Mask R-CNN 模型。 它包含 170 张图片&#xff0c;345 个行人实例。 定义数据集 用于训练目标检测、实例分割和人物关键点检测的参考脚本允许轻松支持添加…

Modbus工业RFID设备在自动化生产线中的应用

传统半自动化生产线在运作的过程&#xff0c;因为技工的熟练程度&#xff0c;专业素养的不同&#xff0c;在制造过程中过多的人为干预&#xff0c;工厂将很难对每条生产线的产能进行标准化管理和优化。如果半自动化生产线系统是通过前道工序的作业结果和检测结果来决定产品在下…

实战指南,SpringBoot + Mybatis 如何对接多数据源

系列文章目录 MyBatis缓存原理 Mybatis plugin 的使用及原理 MyBatisSpringboot 启动到SQL执行全流程 数据库操作不再困难&#xff0c;MyBatis动态Sql标签解析 从零开始&#xff0c;手把手教你搭建Spring Boot后台工程并说明 Spring框架与SpringBoot的关联与区别 Spring监听器…

C语言好题解析(三)

目录 选择题一选择题二选择题三选择题四编程题一编程题二 选择题一 以下程序段的输出结果是&#xff08;&#xff09;#include<stdio.h> int main() { char s[] "\\123456\123456\t"; printf("%d\n", strlen(s)); return 0; }A: 12 B: 13 …

高并发内存池(centralcache)[2]

Central cache threadcache是每个线程独享&#xff0c;而centralcache是多线程共享&#xff0c;需要加锁&#xff08;桶锁&#xff09;一个桶一个锁 解决外碎片问题&#xff1a;内碎片&#xff1a;申请大小超过实际大小&#xff1b;外碎片&#xff1a;空间碎片不连续&#x…