『C语言』数据在内存中的存储规则

在这里插入图片描述

前言

小羊近期已经将C语言初阶学习内容与铁汁们分享完成,接下来小羊会继续追更C语言进阶相关知识,小伙伴们坐好板凳,拿起笔开始上课啦~


一、数据类型的介绍

我们目前已经学了基本的内置类型:

char       //字符数据类型
short      //短整型
int        //整形
long       //长整型
long long  //更长的整形
float      //单精度浮点数
double     //双精度浮点数

类型的基本归类

  1. 整形家族
char:
   unsigned char
   signed char
short:
   unsigned short[int]
   signed short[int]
int:
   unsigned int
   signed int
long:
   unsigned long[int]
   signed long[int]

unsigned:无符号数类型

当一个数是无符号类型时,那么其最高位的1或0,和其它位一样,用来表示该数的大小。

signed:有符号数类型

当一个数是有符号类型时,最高数称为“符号位”。符号位为1时,表示该数为负数,为0时表示为正数。

注意:有符号类型可以表示正数,负数或0,无符号类型仅能表示大于等于0的值

  1. 浮点型家族
float
double
  1. 构造类型:
       //数组类型
struct //结构体类型
enum   //枚举类型
union //联合类型
  1. 指针类型:
int* p;
char* p;
float* p;
void* p;
  1. 空类型:
void//(空类型)

二、整型在内存中的存储

以整型int为例,我们都知道常见的编译器中int占四个字节,那么计算机中这四个字节是如何将数据存储下来的呢?
那我们先了解一下机器数真值的概念,再去了解原码,反码,补码的概念

2.1 机器数

一个数在计算机中的二进制表示形式,叫做这个数的机器数。机器数是带符号的,在计算机中 用机器数的最高位存放符号,正数为0,负数为1。

例如:

+ 3的机器数:0000 0011
- 3的机器数:1000 0011

2.2 真值

因为第一位是符号位,所以机器数的形式值就不等于真正的数值。所以,为区别起见,将带符号位的机器数对应的真正数值称为机器数的真值。

例如:

0000 0001的真值 = +000 0001 = +1
1000 0001的真值 = -000 0001 = -1

2.3 原码、反码、补码

对于一个数,计算机要使用一定的编码方式进行存储,原码、反码、补码是机器存储一个具体数字的编码方式。

三种方式均有符号位数值位两部分,符号位都是0表示“正数”,1表示“负数”,而数值位分正负数而定。

正数的原码、反码、补码都相同,负数的原码、反码、补码各不相同

原码:
直接将数值按照正负数的形式翻译成二进制就可以得到原码
反码:
将原码的符号位不变,其他位次按位取反
补码:
反码符号位不变,数值为+1

反码回到原码的两种方式
1、补码-1后 取反得到原码
2、补码取反后 +1得到原码

对于整形来说:数据存放内存中其实存放的是补码,那这又是为什么呢?

在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数
值域统一处理;同时,加法和减法也可以统一处理(CPU只有加法器 )此外,补码与原码相
互转换,其运算过程是相同的,不需要额外的硬件电路。

我们看看在内存中的存储:
在这里插入图片描述
我们知道内存中a和b存储的是补码,但我们发现存储的顺序有点不对劲。
-10在内存中存储应该是FFFFFFF6,而我们看到的是F6FFFFFF。
这里小羊呢,就为铁汁们了解一下大小端

2.4 大小端介绍

什么是大小端:

大端存储模式:指数据的低位保存在内存的高地址中,而数据的高位保存在内存的低地址中
小端存储模式:指数据的低位保存在内存的低地址中,而数据的高位保存在内存的高地址中

例如:

数字0x12 34 56 78在内存中:

大端模式:(我们通常直观上认为的模式)

        低地址 --------------------> 高地址
         0x12  |  0x34  |  0x56  |  0x78

小端模式:

        低地址 --------------------> 高地址
         0x78  |  0x56  |  0x34  |  0x12

** 为什么会有大端和小端呢?**
因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着一个字节,一个字节为8bit。但是在C语言中除了8 bit的char之外,还有16 bit的short型,32 bit的long型(要看具体的编译器),另外,对于位数大于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式。

如何判断大小端的代码:

#include<stdio.h>
int main()
{
	int i = 1;//0000 0001
	char* p = &i;
	if (*p == 1)//若第一个地址存的是1,即为小端,反则大端
		printf("小端");
	else
		printf("大端";
	return 0;
}

自定义函数测试:

#include<stdio.h>

int check_sys()
{
	int a = 1;
	char* p = (char*)&a;
	if (*p == 1)
		return 1;
	else
		return 0;
}

int main()
{
	if (check_sys() == 1)
		printf("小端");
	else
		printf("大端");
	return 0;
}

三、浮点数在内存中的存储

#include<stdio.h>
int main()
{
	int n = 9;
	float* p = (float*)&n;
	printf("n的值为:%d\n", n);
	printf("*p的值为:%f\n", *p);
	*p = 9.0;
	printf("n的值为:%d\n", n);
	printf("*p的值为:%f\n", *p);
	return 0;
}

我们先试着猜一下结果
输出显示:
在这里插入图片描述
怎么样,这个结果是不是有点出乎意料!那么就跟着小羊来学习浮点数的存储规则吧。

3.1浮点数存储规则

浮点数存储形式:

根据国际标准IEEE(电子和电子工程协会)754,任意一个二进制浮点数V可以表示为下面的形式:

(-1) ^ S * M * 2 ^ E

 1.  (-1) ^ S 表示符号位,当S=0时,V为正数;当S=1时,V为负数
 2.  M 表示有效数字,且1 <= M <2
 3.  2 ^ E表示指数位

例如:

  1. 十进制的5.0,写成二进制是0101 ------> 1.10x2^2
    可以得出s=0,M=1.01,E=2
  2. 十进制的-7.0,写成二进制是0111 ------->1.11x2^2
    可以得出s=-1,M=1.11,E=2

IEEE 754 规定:

对于 32 位的浮点数(单精度),最高的 1 位是符号位 s ,接着的 8 位是指数 E ,剩下的 23位为有效数字 M 。

在这里插入图片描述

对于 64 位的浮点数(双精度),最高的 1 位是符号位S,接着的 11 位是指数 E ,剩下的 52 位为有效数字 M 。
在这里插入图片描述
IEEE 754 对有效数字** M **和指数 E ,还有一些特别规定。
前面说过, 1≤M<2 ,也就是说, M 可以写成 1.xxxxxx 的形式,其中 xxxxxx 表示小数部分。
IEEE 754 规定,在计算机内部保存 M 时,默认这个数的第一位总是 1 ,因此可以被舍去,只保存后面的xxxxxx部分。比如保存 1.01 的时候,只保存01 ,等到读取的时候,再把第一位的 1 加上去。这样做的目的,是节省 1 位有效数字。以 32 位浮点数为例,留给M 只有 23 位,将第一位的1 舍去后等于可以保存 24 位有效数字。

至于指数 E ,情况就比较复杂。首先, E 为一个无符号整数( unsigned int )
这意味着,如果 E 为 8 位,它的取值范围为 0~255 ;如果 E 为 11 位,它的取值范围为 0~2047 。但是我们知道,科学计数法中的E 是可以出现负数的,所以IEEE 754 规定,存入内存时 E 的真实值必须再加上一个中间数,对于 8 位的 E ,这个中间数是127 ;对于 11 位的 E ,这个中间数是1023 。比如 2^10的 E 是 10 ,所以保存成 32 位浮点数时,必须保存成 10+127=137 ,即10001001。

3.2 浮点型的读取

我们知道浮点型在内存中的存储后,将步骤反过来就是取出的过程。
1、有效数字M:

IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存小数部分。比如保存1.0110001101时,只保存0110001101,后面的位数补0就可以了,等到读取的时候,再把第一位的1补上去。

2、指数E

E为一个无符号整数(unsigned int)根据指数域不同取值分为一下三种情况:

1)E不全为0或不全为1(规格化值)

这是最常见情况,取出内存中的数时,指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第一位的1。

2)E全为0(非规格化值)

这时,浮点数的指数E等于1-127(或1-1023)即为真实值,有效数字M不再加上第一位的1,而是还原为0.xxxxxxx的小数。这样做是为了表示正负零,以及接近于0的很小的数字。

3)E全为1(特殊数值)

当指数域全为1时属于这种情形。此时,如果小数域全为0且符号域S=0,则表示正无穷,如果小数域全为0且符号域S=1,则表示负无穷。如果小数域不全为0时,浮点数将被解释为NaN, 即不是一个数(Not a Number)

解释前面的题目

整形9以浮点型打印
整形存储,浮点型打印
0000  0000 0000 0000 0000 0000 0000 1001
浮点型读取:
s=0,M=000 0000 0000 0000 0000 0110,E=0000 0000(E全为0)
所以结果为:0.0000(近于0的很小的数字)

现在看例题的第二部:
浮点数9.0以整形打印
9.0 -> 1001.0 -> (-1)^0*1.001*2^3 -> s=0,M=1.001,E=3+127=130
所以第一位的符号位s=0,有效数字M为001后面在加200,凑满23位,指数E为3+127=130,即10000010
所以写成S+E+M:
0 10000010 001 0000 0000 0000 0000 000032位的二进制数,还原成十进制,正是1091567616

总结

希望看完这篇文章对铁汁们有所帮助,小羊后续还会持续更新C语言的学习知识,希望小伙伴们给个支持,来个一键三连~
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/80338.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

如何使用Redis实现附近商家查询

导读 在日常生活中&#xff0c;我们经常能看见查询附近商家的功能。 常见的场景有&#xff0c;比如你在点外卖的时候&#xff0c;就可能需要按照距离查询附近几百米或者几公里的商家。 本文将介绍如何使用Redis实现按照距离查询附近商户的功能&#xff0c;并以SpringBoot项目…

面试之快速学习STL- vector

1. vector底层实现机制刨析&#xff1a; 简述&#xff1a;使用三个迭代器表示的&#xff1a; &#xfffc; 这也就解释了&#xff0c;为什么 vector 容器在进行扩容后&#xff0c;与其相关的指针、引用以及迭代器可能会失效的原因。 insert 整体向后移 erase 整体向前移…

科技云报道:算力之战,英伟达再度释放AI“炸弹”

科技云报道原创。 近日&#xff0c;在计算机图形学顶会SIGGRAPH 2023现场&#xff0c;英伟达再度释放深夜“炸弹”&#xff0c;大模型专用芯片迎来升级版本。 英伟达在会上发布了新一代GH200 Grace Hopper平台&#xff0c;该平台依托于搭载全球首款搭载HBM3e处理器的新型Grac…

优于立方复杂度的 Rust 中矩阵乘法

优于立方复杂度的 Rust 中矩阵乘法 迈克克维特 跟随 发表于 更好的编程 6 分钟阅读 7月 <> 143 中途&#xff1a;三次矩阵乘法 一、说明 几年前&#xff0c;我在 C 年编写了 Strassen 矩阵乘法算法的实现&#xff0c;最近在 Rust 中重新实现了它&#xff0c;因为我继续…

16、可重入锁+设计模式

可重入锁设计模式 while判断并自旋重试获取锁setnx含自然过期时间Lua脚本官网删除锁命令但不能保证可重如 问题&#xff0c;如何兼顾锁的可重入性问题&#xff1f; 可重入锁 可重入锁又名递归锁 是指在同一个线程在外层方法获取锁的时候&#xff0c;再进入该线程的内层方法…

【JVM】对String::intern()方法深入详解(JDK7及以上)

文章目录 1、什么是intern&#xff1f;2、经典例题解释例1例2例3 1、什么是intern&#xff1f; String::intern()是一个本地方法&#xff0c;它的作用是如果字符串常量池中已经包含一个等于此String对象的字符串&#xff0c;则返回代表池中这个字符串的String对象的引用&#…

Unable to find resource t64.exe in package pip._vendor.distlib报错问题解决

Unable to find resource t64.exe in package pip._vendor.distlib报错问题解决 问题报错具体内容具体解决方案解决方法一解决方法二 问题报错具体内容 想要对python的版本进行一个升级,使用如下语句 python -m pip install --upgrade pip出现如下报错 Unable to find reso…

OpenZFS 2.2 发布 RC3,支持 Linux 6.4

导读之前的 OpenZFS 2.2 候选版本已致力于实现与 Linux 6.4 内核的兼容性&#xff0c;而在 2.2-rc3 中&#xff0c;Linux 6.4 支持的元跟踪器已标记为已完成。 OpenZFS 2.2 发布了第 3 个 RC 版本。 之前的 OpenZFS 2.2 候选版本已致力于实现与 Linux 6.4 内核的兼容性&#x…

深入理解内存 —— 函数栈帧的创建与销毁

前言 一位优秀的程序员&#xff0c;必须对内存的分布有深刻的理解&#xff0c;在初学编程的时候&#xff0c;往往有诸如以下很多问题困扰着初学者&#xff0c;而通过今天的分享&#xff0c;我们就可以通过自己的观察&#xff0c;将这些问题统统解决掉 局部变量是怎么创建的&…

Python Opencv实践 - 图像仿射变换

import cv2 as cv import numpy as np import matplotlib.pyplot as pltimg cv.imread("../SampleImages/pomeranian.png", cv.IMREAD_COLOR) rows,cols img.shape[:2] print(img.shape[:2])#使用getAffineTransform来获得仿射变换的矩阵M #cv.getAffineTransform(…

Microsoft ISA服务器配置及日志分析

Microsoft ISA 分析器工具&#xff0c;可分析 Microsoft ISA 服务器&#xff08;或 Forefront 威胁管理网关服务器&#xff09;的日志并生成安全和流量报告。支持来自 Microsoft ISA 服务器组件的以下日志&#xff1a; 数据包过滤器ISA 服务器防火墙服务ISA 服务器网络代理服务…

图片合成动图怎么弄?gif图制作的简单方法

许多鬼畜的表情包其实是用图片合成gif完成的&#xff0c;那么怎么将图片转gif呢&#xff1f;使用GIF中文网的gif合成&#xff08;https://www.gif.cn&#xff09;功能&#xff0c;打开浏览器就可以完成gif图片制作&#xff0c;非常简单方便&#xff0c;一起来了解一下吧。 打开…

智安网络|深入比较:Sass系统与源码系统的差异及选择指南

随着前端开发的快速发展&#xff0c;开发人员需要使用更高效和灵活的工具来处理样式表。在这个领域&#xff0c;Sass系统和源码系统是两个备受关注的选项。 Sass系统 Sass&#xff08;Syntactically Awesome Style Sheets&#xff09;是一种CSS预处理器&#xff0c;它扩展了CS…

Lnton羚通关于【PyTorch】教程:torchvision 目标检测微调

torchvision 目标检测微调 本教程将使用Penn-Fudan Database for Pedestrian Detection and Segmentation 微调 预训练的Mask R-CNN 模型。 它包含 170 张图片&#xff0c;345 个行人实例。 定义数据集 用于训练目标检测、实例分割和人物关键点检测的参考脚本允许轻松支持添加…

Modbus工业RFID设备在自动化生产线中的应用

传统半自动化生产线在运作的过程&#xff0c;因为技工的熟练程度&#xff0c;专业素养的不同&#xff0c;在制造过程中过多的人为干预&#xff0c;工厂将很难对每条生产线的产能进行标准化管理和优化。如果半自动化生产线系统是通过前道工序的作业结果和检测结果来决定产品在下…

实战指南,SpringBoot + Mybatis 如何对接多数据源

系列文章目录 MyBatis缓存原理 Mybatis plugin 的使用及原理 MyBatisSpringboot 启动到SQL执行全流程 数据库操作不再困难&#xff0c;MyBatis动态Sql标签解析 从零开始&#xff0c;手把手教你搭建Spring Boot后台工程并说明 Spring框架与SpringBoot的关联与区别 Spring监听器…

C语言好题解析(三)

目录 选择题一选择题二选择题三选择题四编程题一编程题二 选择题一 以下程序段的输出结果是&#xff08;&#xff09;#include<stdio.h> int main() { char s[] "\\123456\123456\t"; printf("%d\n", strlen(s)); return 0; }A: 12 B: 13 …

高并发内存池(centralcache)[2]

Central cache threadcache是每个线程独享&#xff0c;而centralcache是多线程共享&#xff0c;需要加锁&#xff08;桶锁&#xff09;一个桶一个锁 解决外碎片问题&#xff1a;内碎片&#xff1a;申请大小超过实际大小&#xff1b;外碎片&#xff1a;空间碎片不连续&#x…

redis 发布和订阅

目录 一、简介 二、常用命令 三、示例 一、简介 Redis 发布订阅 (pub/sub) 是一种消息通信模式&#xff1a;发送者 (pub) 发送消息&#xff0c;订阅者 (sub) 接收消息。Redis 客户端可以订阅任意数量的频道。下图展示了频道 channel1 &#xff0c;以及订阅这个频道的三个客户…

53.Linux day03 文件查看命令,vi/vim常用命令

今天进行了新的学习。 目录 1.cat a.查看单个文件的内容&#xff1a; b.查看多个文件的内容&#xff1a; c.将多个文件的内容连接并输出到一个新文件&#xff1a; d.显示带有行号的文件内容&#xff1a; 2.more 3.less 4.head 5.tail 6.命令模式 7.插入模式 8.图…