实验一:图像信号的数字化

目录

一、实验目的

 二、实验原理

三、实验内容

四、源程序及结果

源程序(python):

结果:

五、结果分析


一、实验目的

  1. 通过本实验了解图像的数字化过程,了解数字图像的数据矩阵表示法。
  2. 掌握取样(象素个数)、量化与图像质量的关系。

 二、实验原理

        数字化的图像是以矩阵形式存储的,因而数字图像的数据矩阵表示法是指将数字化后的图像表示为一个二维矩阵的形式,其中矩阵中的元素对应于图像像素的灰度值。

        对于同一幅图像,不同的像素总数会影响其图像的分辨率和清晰度,一般来说,越大的像素总数意味着越高的清晰度;反之,图像的像素数越小,图像会越不清晰,出项“棋盘格”现象(马赛克),图像细节越来越小。

        不同灰度级呈现的图像也有着类似的效果。在灰度级数量较高的情况下,图像能够显示更多细微的灰度变化,这样的图像具有更高的对比度黑白之间的过渡更为清晰,使得图像更生动、细腻相反,当灰度级数量较低时,图像只能表示较少的灰度变化范围,黑白之间的过渡不够平滑,过低的灰度级还会出现“伪轮廓”现象导致图像中出现了不真实的边界或轮廓。

三、实验内容

  1. 选取任意一副灰度图像,imread进行读取,显示其像素值阵列。
  2. 减少图像的像素,实现多组不同像素总数表示的同一副图像。观察图像采样的像素数对图像质量的影响,观察“棋盘格”现象。
  3. 减小同一副图像灰度级,实现多组不同灰度级来显示同一幅图像,并选取合适的灰度阈值来实现一幅二值图像。观察图像量化对图像质量的影响,观察“伪轮廓”现象。

四、源程序及结果

源程序(python):
import cv2
from matplotlib import pyplot as plt


def pixel_list(height, width, grayscale):
    for i in range(height):
        for j in range(width):
            pixel_value = grayscale[i, j]
            print(f'{pixel_value:3}', end=' ')
        print('\n')


if __name__ == '__main__':
    # 1.读取图片灰度图信息
    img_grayscale = cv2.imread(filename='lena.jpg', flags=cv2.IMREAD_GRAYSCALE)
    img_height, img_width = img_grayscale.shape

    # 2.显示像素阵列
    pixel_list(height=img_height, width=img_width, grayscale=img_grayscale)

    # 3.绘图:matplot显示图片
    fig, axis = plt.subplots(2, 4)
    # 1)原图
    axis[0, 0].imshow(img_grayscale, cmap='gray')
    axis[0, 0].set_title('Original(256\u00D7256)')
    # 2)128*128像素
    axis[0, 1].imshow(cv2.resize(img_grayscale, (128, 128)), cmap='gray')
    axis[0, 1].set_title('128\u00D7128')
    # 3)64*64像素
    axis[0, 2].imshow(cv2.resize(img_grayscale, (64, 64)), cmap='gray')
    axis[0, 2].set_title('64\u00D764')
    # 4)32*32像素
    axis[0, 3].imshow(cv2.resize(img_grayscale, (32, 32)), cmap='gray')
    axis[0, 3].set_title('32\u00D732')
    # 5)灰度级32
    img_grayscale_32 = cv2.convertScaleAbs(img_grayscale, alpha=31 / 255, beta=0)
    axis[1, 0].imshow(img_grayscale_32, cmap='gray', vmin=0, vmax=31)
    axis[1, 0].set_title('Grayscale:32')
    # 6)灰度级16
    img_grayscale_16 = cv2.convertScaleAbs(img_grayscale, alpha=15 / 255, beta=0)
    axis[1, 1].imshow(img_grayscale_16, cmap='gray', vmin=0, vmax=15)
    axis[1, 1].set_title('Grayscale:16')
    # 7)灰度级8
    img_grayscale_8 = cv2.convertScaleAbs(img_grayscale, alpha=7 / 255, beta=0)
    axis[1, 2].imshow(img_grayscale_8, cmap='gray', vmin=0, vmax=7)
    axis[1, 2].set_title('Grayscale:8')
    # 8)二值图
    _, binary_image = cv2.threshold(img_grayscale_8, 3, 7, cv2.THRESH_BINARY)
    axis[1, 3].imshow(binary_image, cmap='gray')
    axis[1, 3].set_title('Binary Image')

    plt.show()
结果:

图1 图像像素矩阵(部分)

图2 不同像素数及灰度级数下的同一图像

五、结果分析

        如图一所示,一幅灰度图像的每一个像素点都是用一个灰度级表示。实验中使用的图像为8比特分辨率,因此含有256个灰度级别。

        对于不同像素数表示的同一图像,减小像素数,在一定范围内,图像的变化并不明显,如图2中256×256和128×128图像变化比较小,但继续减小像素数,图像会出现“棋盘格”现象且越来越明显,如图中的64×64到32×32图像。

        同样的,减小灰度级数,在一定范围内图像的变化也不明显,而但灰度级减小到一定程度时,便会在图像的某些区域出现灰度突变的“伪轮廓”,而且这种现象会随灰度级减小越来越明显,如图2中灰度级16和8的两幅图像。如果灰度级减小到为2时,就是所谓的二值图,只有黑白两种颜色,图像边界会更明显。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/800290.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

利用AI辅助制作ppt封面

如何利用AI辅助制作一个炫酷的PPT封面 标题使用镂空字背景替换为动态视频 标题使用镂空字 1.首先,新建一个空白的ppt页面,插入一张你认为符合主题的图片,占满整个可视页面。 2.其次,插入一个矩形,右键选择设置形状格式…

uniapp-vue3-vite 搭建小程序、H5 项目模板

uniapp-vue3-vite 搭建小程序、H5 项目模板 特色准备拉取默认UniApp模板安装依赖启动项目测试结果 配置自动化导入安装依赖在vite.config.js中配置 引入 prerttier eslint stylelint.editorconfig.prettierrc.cjs.eslintrc.cjs.stylelintrc.cjs 引入 husky lint-staged com…

2024Datawhale AI夏令营---基于术语词典干预的机器翻译挑战赛--学习笔记

#Datawhale #NLP 1.背景介绍: 机器翻译(Machine Translation,简称MT)是自然语言处理领域的一个重要分支,其目标是将一种语言的文本自动转换为另一种语言的文本。机器翻译的发展可以追溯到20世纪50年代,经历…

springboot 适配ARM 架构

下载对应的maven https://hub.docker.com/_/maven/tags?page&page_size&ordering&name3.5.3-alpinedocker pull maven:3.5.3-alpinesha256:4c4e266aacf8ea6976b52df8467134b9f628cfed347c2f6aaf9e6aff832f7c45 2、下载对应的jdk https://hub.docker.com/_/o…

【银河麒麟操作系统】虚机重启lvs丢失现象分析及处理建议

了解银河麒麟操作系统更多全新产品,请点击访问麒麟软件产品专区:https://product.kylinos.cn 环境及现象描述 40台虚机强制重启后,其中8台虚机找不到逻辑卷导致启动异常,后续通过pvcreate 修复重建pv,激活vg和lv并修复…

矿产资源潜力预测不确定性评价

研究目的: 不确定性评估: 到底什么叫不确定性,简单来说就是某区域内的矿产资源量,并不确定到底有多少,你需要给出一个评估或者分布。 研究方法: 1.以模糊集来表示某些量: 关于什么是模糊集&am…

AWS Aurora Postgres 的开源替代品:存储和计算分离 | 开源日报 No.278

neondatabase/neon Stars: 13.0k License: Apache-2.0 Neon 是一个无服务器的开源替代品,用于 AWS Aurora Postgres。它将存储和计算分离,通过在节点集群中重新分配数据来替换 PostgreSQL 存储层。 提供自动扩展、分支和无限存储。Neon 安装包括计算节…

【常见开源库的二次开发】基于openssl的加密与解密——Base58比特币钱包地址——算法分析(三)

目录: 目录: 一、base58(58进制) 1.1 什么是base58? 1.2 辗转相除法 1.3 base58输出字节数: 二、源码分析: 2.1源代码: 2.2 算法思路介绍: 2.2.1 Base58编码过程: 2.1.2 Base58解码过…

基于高德地图实现Android定位功能实现(二)

基于高德地图实现Android定位功能实现(二) 在实现的高德地图的基本显示后,我们需要不断完善地图的功能 地图界面设计(悬浮按钮等) 首先就是地图页面的布局,这个根据大家的实际需求进行设计即可&#xff…

nacos 适配瀚高数据库、ARM 架构

下载nacos源码: https://github.com/alibaba/nacos/tree/2.3.1 瀚高技术文档 1、修改pom.xml 根目录nacos-all => pom.xml<dependencyManagement><dependency><groupId>com.highgo</groupId><artifactId>HgdbJdbc</artifactId><…

xss复习总结及ctfshow做题总结xss

xss复习总结 知识点 1.XSS 漏洞简介 ​ XSS又叫CSS&#xff08;Cross Site Script&#xff09;跨站脚本攻击是指恶意攻击者往Web页面里插入恶意Script代码&#xff0c;当用户浏览该页之时&#xff0c;嵌入其中Web里面的Script代码会被执行&#xff0c;从而达到恶意攻击用户的…

MySQL篇:事务

1.四大特性 首先&#xff0c;事务的四大特性&#xff1a;ACID&#xff08;原子性&#xff0c;一致性&#xff0c;隔离性&#xff0c;持久性&#xff09; 在InnoDB引擎中&#xff0c;是怎么来保证这四个特性的呢&#xff1f; 持久性是通过 redo log &#xff08;重做日志&…

【ARM】MDK-服务器与客户端不同网段内出现卡顿问题

【更多软件使用问题请点击亿道电子官方网站】 1、 文档目标 记录不同网段之间的请求发送情况以及MDK网络版license文件内设置的影响。 2、 问题场景 客户使用很久的MDK网络版&#xff0c;在获取授权时都会出现4-7秒的卡顿&#xff0c;无法对keil进行任何操作&#xff0c;彻底…

java——Junit单元测试

测试分类 黑盒测试&#xff1a;不输入代码&#xff0c;给输入值&#xff0c;看程序能够给出期望的值。 白盒测试&#xff1a;写代码&#xff0c;关注程序具体执行流程。 JUnit单元测试 一个测试框架&#xff0c;供java开发人员编写单元测试。 是程序员测试&#xff0c;即白…

【边缘计算网关教程】6.松下 Mewtocol TCP 协议

前景回顾&#xff1a;【边缘计算网关教程】5.三菱FX3U编程口通讯-CSDN博客 松下 Mewtocol TCP 协议 适配PLC&#xff1a;松下FP0H 松下XHC60ET 1. 硬件连接 Mewtocol TCP协议采用网口通信的方式&#xff0c;因此&#xff0c;只需要保证网关的LAN口和松下PLC的IP在一个网段即…

【车载开发系列】GIT教程---如何下载代码库

【车载开发系列】GIT教程—如何下载代码库 【车载开发系列】GIT教程---如何下载代码库 【车载开发系列】GIT教程---如何下载代码库一. 设置用户名和邮箱二. 生成SSH三. 登录远程github仓库配置四. Git中的ssh协议介绍五. 什么是GitLab六. GitLab与GitHub区别1&#xff09;用途和…

【区块链 + 智慧政务】区块链 +ETC 下一代公路联网收费关键技术优化项目 | FISCO BCOS应用案例

2020 年&#xff0c;我国取消省界收费站项目完成后&#xff0c;随着收费模式与收费方式的变化&#xff0c;形成了以门架为计费单元的新收 费体系&#xff1a;按照车辆通行门架数&#xff0c;RSU 天线读取 ETC 卡、电子标签 OBU 或 CPC 卡内标识的车型信息&#xff0c;车型门架计…

Qt实现MDI应用程序

本文记录Qt实现MDI应用程序的相关操作实现 目录 1.MDM模式下窗口的显示两种模式 1.1TabbedView 页签化显示 1.2 SubWindowView 子窗体显示 堆叠cascadeSubWindows 平铺tileSubWindows 2.MDM模式实现记录 2.1. 窗体继承自QMainWindow 2.2.增加组件MdiArea 2.3.定义统一…

塑胶件缺胶影响工业生产,云盘科技提供解决方案!

塑料件的成型检测&#xff0c;主要检测其中的各种高低、形状的柱子、块块、条条之类的。因为有一些产品在成型时&#xff0c;可能柱子没有足够的料&#xff0c;又或者是某个挡块只有一半这样的。所以需要进行一定的检测。 塑胶在注塑加工成型后&#xff0c;出现缺胶缺陷。思普泰…

RT-DETR+Flask实现目标检测推理案例

今天&#xff0c;带大家利用RT-DETR&#xff08;我们可以换成任意一个模型&#xff09;Flask来实现一个目标检测平台小案例&#xff0c;其实现效果如下&#xff1a; 目标检测案例 这个案例很简单&#xff0c;就是让我们上传一张图像&#xff0c;随后选择一下置信度&#xff0c;…