摘要
本文总结了各种注意力,即插即用,方便大家将注意力加到自己的论文中。
SE
import torch
from torch import nn
class SEAttention(nn.Module):
"""
SENet(Squeeze-and-Excitation Networks)中的注意力模块。
通过全局平均池化后,使用两个全连接层来学习通道间的相关性,
最后通过sigmoid激活函数得到每个通道的权重,用于对输入特征进行重标定。
Args:
channel (int): 输入特征的通道数。
reduction (int): 第一个全连接层的压缩比例,用于减少参数和计算量。
"""
def __init__(self, channel=512, reduction=16):
super(SEAttention, self).__init__()
# 使用自适应平均池化将特征图的空间维度压缩为1x1
self.avg_pool = nn.AdaptiveAvgPool2d(1)
# 定义两个全连接层,中间使用ReLU激活,最后使用Sigmoid得到权重
self.fc = nn.Sequential(
nn.Linear(channel, channel // reduction, bias=False), # 压缩通道数
nn.ReLU(inplace=True),
nn.Linear(channel // reduction, channel, bias=False), # 恢复通道数
nn.Sigmoid() # 得到每个通道的权重
)
def forward(self, x):
"""
前向传播函数。
Args:
x (torch.Tensor): 输入特征图,形状为(batch_size, channel, height, width)。
Returns:
torch.Tensor: 经过注意力机制重标定后的特征图,形状与输入相同。
"""
b, c, _, _ = x.size() # 获取批次大小、通道数、高度和宽度
# 通过全局平均池化压缩空间维度
y = self.avg_pool(x).view(b, c) # 形状变为(batch_size, channel)
# 通过全连接层学习通道间的相关性,并应用sigmoid激活得到权重
y = self.fc(y).view(b, c, 1, 1) # 形状调整为(batch_size, channel, 1, 1)以便与输入特征图相乘
# 使用权重对输入特征图进行重标定
return x * y.expand_as(x)
if __name__ == '__main__':
# 创建一个随机的输入张量,模拟一批数据
input_tensor = torch.randn(64, 512, 20, 20) # 形状为(batch_size, channel, height, width)
# 实例化SEAttention模块
se_attention = SEAttention(channel=512, reduction=8)
# 通过模块处理输入张量
output_tensor = se_attention(input_tensor)
# 打印输出张量的形状,应与输入相同
print(output_tensor.shape)
A2-Nets: Double Attention Networks
链接:https://arxiv.org/abs/1810.11579
import torch
from torch import nn
from torch.nn import functional as F
class DoubleAttention(nn.Module):
"""
双注意力模块,结合了特征门控和特征分布机制。
Args:
in_channels (int): 输入特征的通道数。
c_m (int): 卷积层convA的输出通道数。
c_n (int): 卷积层convB和convV的输出通道数。
reconstruct (bool): 是否在注意力处理后使用卷积层进行重构。
"""
def __init__(self, in_channels, c_m=128, c_n=128, reconstruct=True):
super(DoubleAttention, self).__init__()
self.in_channels = in_channels
self.reconstruct = reconstruct
self.c_m = c_m
self.c_n = c_n
# 定义三个卷积层
self.convA = nn.Conv2d(in_channels, c_m, 1)
self.convB = nn.Conv2d(in_channels, c_n, 1)
self.convV = nn.Conv2d(in_channels, c_n, 1)
# 如果需要重构,则添加一个卷积层
if self.reconstruct:
self.conv_reconstruct = nn.Conv2d(c_m, in_channels, kernel_size=1)
def forward(self, x):
"""
前向传播函数。
Args:
x (torch.Tensor): 输入特征图,形状为(batch_size, in_channels, height, width)。
Returns:
torch.Tensor: 经过双注意力机制处理后的特征图,形状可能根据reconstruct参数变化。
"""
b, c, h, w = x.shape
assert c == self.in_channels, "输入通道数与预期不符"
# 通过三个不同的卷积层得到不同的特征图
A = self.convA(x) # b, c_m, h, w
B = self.convB(x) # b, c_n, h, w
V = self.convV(x) # b, c_n, h, w
# 将特征图A展平以便进行矩阵乘法
tmpA = A.view(b, self.c_m, -1) # b, c_m, h*w
# 计算注意力图
attention_maps = F.softmax(B.view(b, self.c_n, -1), dim=-1) # b, c_n, h*w
attention_vectors = F.softmax(V.view(b, self.c_n, -1), dim=1) # b, c_n, h*w
# 步骤1: 特征门控
global_descriptors = torch.bmm(tmpA, attention_maps.permute(0, 2, 1)) # b, c_m, c_n
# 步骤2: 特征分布
tmpZ = torch.bmm(global_descriptors, attention_vectors) # b, c_m, h*w
tmpZ = tmpZ.view(b, self.c_m, h, w) # b, c_m, h, w
# 如果需要重构,则通过卷积层处理tmpZ
if self.reconstruct:
tmpZ = self.conv_reconstruct(tmpZ)
return tmpZ
if __name__ == '__main__':
# 创建一个随机的输入张量
input_tensor = torch.randn(64, 512, 20, 20)
# 实例化双注意力模块
double_attention = DoubleAttention(512)
# 通过模块处理输入张量
output_tensor = double_attention(input_tensor)
# 打印输出张量的形状
print(output_tensor.shape)
BAM
import torch
from torch import nn
def autopad(kernel_size, padding=None, dilation=1):
"""
计算并返回'same'形状输出所需的自动填充大小。
Args:
kernel_size (int or list of int): 卷积核大小。
padding (int or list of int, optional): 填充大小。如果为None,则自动计算。
dilation (int, optional): 扩张率。默认为1。
Returns:
int or list of int: 所需的填充大小。
"""
if dilation > 1:
kernel_size = dilation * (kernel_size - 1) + 1 if isinstance(kernel_size, int) else [dilation * (x - 1) + 1 for x in kernel_size]
if padding is None:
padding = kernel_size // 2 if isinstance(kernel_size, int) else [x // 2 for x in kernel_size]
return padding
class Flatten(nn.Module):
"""
将输入张量展平为二维张量。
"""
def forward(self, x):
return x.view(x.size(0), -1)
class ChannelAttention(nn.Module):
"""
通道注意力机制模块。
"""
def __init__(self, in_channels, reduction=16, num_layers=3):
"""
初始化通道注意力模块。
Args:
in_channels (int): 输入通道数。
reduction (int, optional): 通道数减少的比例。默认为16。
num_layers (int, optional): 内部全连接层的数量。默认为3。
"""
super(ChannelAttention, self).__init__()
self.avgpool = nn.AdaptiveAvgPool2d(1)
gate_channels = [in_channels]
gate_channels += [in_channels // reduction] * num_layers
gate_channels += [in_channels]
self.ca = nn.Sequential()
self.ca.add_module('flatten', Flatten())
for i in range(len(gate_channels) - 2):
self.ca.add_module(f'fc_{i}', nn.Linear(gate_channels[i], gate_channels[i + 1]))
self.ca.add_module(f'bn_{i}', nn.BatchNorm1d(gate_channels[i + 1]))
self.ca.add_module(f'relu_{i}', nn.ReLU())
self.ca.add_module('last_fc', nn.Linear(gate_channels[-2], gate_channels[-1]))
def forward(self, x):
"""
前向传播。
Args:
x (torch.Tensor): 输入张量。
Returns:
torch.Tensor: 经过通道注意力加权后的张量。
"""
res = self.avgpool(x)
res = self.ca(res)
res = res.unsqueeze(-1).unsqueeze(-1).expand_as(x)
return res
# 空间注意力模块
class SpatialAttention(nn.Module):
def __init__(self, in_channels, reduction=16, num_layers=3, dilation=2):
"""
初始化空间注意力模块。
Args:
in_channels (int): 输入通道数。
reduction (int, optional): 通道数减少的比例。默认为16。
num_layers (int, optional): 内部卷积层的数量。默认为3。
dilation (int, optional): 卷积层的扩张率。默认为2。
"""
super(SpatialAttention, self).__init__()
self.sa = nn.Sequential()
# 第一个卷积层,用于减少通道数
self.sa.add_module('conv_reduce', nn.Conv2d(kernel_size=1, in_channels=in_channels, out_channels=in_channels // reduction))
self.sa.add_module('bn_reduce', nn.BatchNorm2d(in_channels // reduction))
self.sa.add_module('relu_reduce', nn.ReLU())
# 添加多个卷积层
for i in range(num_layers):
self.sa.add_module(f'conv_{i}', nn.Conv2d(kernel_size=3, in_channels=in_channels // reduction,
out_channels=in_channels // reduction,
padding=autopad(3, None, dilation), dilation=dilation))
self.sa.add_module(f'bn_{i}', nn.BatchNorm2d(in_channels // reduction))
self.sa.add_module(f'relu_{i}', nn.ReLU())
# 最后一个卷积层,输出单通道特征图
self.sa.add_module('last_conv', nn.Conv2d(in_channels // reduction, 1, kernel_size=1))
def forward(self, x):
"""
前向传播。
Args:
x (torch.Tensor): 输入张量。
Returns:
torch.Tensor: 经过空间注意力加权后的张量(单通道),之后将用于扩展。
"""
res = self.sa(x)
res = res.expand_as(x) # 将单通道张量扩展为与输入相同的形状
return res
# BAM块,结合了通道注意力和空间注意力
class BAMBlock(nn.Module):
def __init__(self, in_channels=512, reduction=16, dilation=2):
"""
初始化BAM块。
Args:
in_channels (int, optional): 输入通道数。默认为512。
reduction (int, optional): 通道数减少的比例。默认为16。
dilation (int, optional): 空间注意力中卷积层的扩张率。默认为2。
"""
super(BAMBlock, self).__init__()
self.ca = ChannelAttention(in_channels=in_channels, reduction=reduction)
self.sa = SpatialAttention(in_channels=in_channels, reduction=reduction, dilation=dilation)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
"""
前向传播。
Args:
x (torch.Tensor): 输入张量。
Returns:
torch.Tensor: 经过BAM块处理后的输出张量。
"""
sa_out = self.sa(x) # 空间注意力输出
ca_out = self.ca(x) # 通道注意力输出
# 将空间注意力和通道注意力相加,并通过sigmoid激活函数得到权重
weight = self.sigmoid(sa_out + ca_out)
# 将权重应用于输入张量,并进行残差连接
out = (1 + weight) * x
return out
# 测试BAM块
if __name__ == '__main__':
input = torch.randn(64, 512, 7, 7)
bam = BAMBlock(in_channels=512, reduction=16, dilation=2)
output = bam(input)
print(output.shape) # 应该输出 shape.
BiFormer
https://github.com/rayleizhu/BiFormer
"""
Core of BiFormer, Bi-Level Routing Attention.
To be refactored.
author: ZHU Lei
github: https://github.com/rayleizhu
email: ray.leizhu@outlook.com
This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
"""
from typing import Tuple, Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from torch import Tensor, LongTensor
class TopkRouting(nn.Module):
"""
differentiable topk routing with scaling
Args:
qk_dim: int, feature dimension of query and key
topk: int, the 'topk'
qk_scale: int or None, temperature (multiply) of softmax activation
with_param: bool, wether inorporate learnable params in routing unit
diff_routing: bool, wether make routing differentiable
soft_routing: bool, wether make output value multiplied by routing weights
"""
def __init__(self, qk_dim, topk=4, qk_scale=None, param_routing=False, diff_routing=False):
super().__init__()
self.topk = topk
self.qk_dim = qk_dim
self.scale = qk_scale or qk_dim ** -0.5
self.diff_routing = diff_routing
# TODO: norm layer before/after linear?
self.emb = nn.Linear(qk_dim, qk_dim) if param_routing else nn.Identity()
# routing activation
self.routing_act = nn.Softmax(dim=-1)
def forward(self, query:Tensor, key:Tensor)->Tuple[Tensor]:
"""
Args:
q, k: (n, p^2, c) tensor
Return:
r_weight, topk_index: (n, p^2, topk) tensor
"""
if not self.diff_routing:
query, key = query.detach(), key.detach()
query_hat, key_hat = self.emb(query), self.emb(key) # per-window pooling -> (n, p^2, c)
attn_logit = (query_hat*self.scale) @ key_hat.transpose(-2, -1) # (n, p^2, p^2)
topk_attn_logit, topk_index = torch.topk(attn_logit, k=self.topk, dim=-1) # (n, p^2, k), (n, p^2, k)
r_weight = self.routing_act(topk_attn_logit) # (n, p^2, k)
return r_weight, topk_index
class KVGather(nn.Module):
def __init__(self, mul_weight='none'):
super().__init__()
assert mul_weight in ['none', 'soft', 'hard']
self.mul_weight = mul_weight
def forward(self, r_idx:Tensor, r_weight:Tensor, kv:Tensor):
"""
r_idx: (n, p^2, topk) tensor
r_weight: (n, p^2, topk) tensor
kv: (n, p^2, w^2, c_kq+c_v)
Return:
(n, p^2, topk, w^2, c_kq+c_v) tensor
"""
# select kv according to routing index
n, p2, w2, c_kv = kv.size()
topk = r_idx.size(-1)
# print(r_idx.size(), r_weight.size())
# FIXME: gather consumes much memory (topk times redundancy), write cuda kernel?
topk_kv = torch.gather(kv.view(n, 1, p2, w2, c_kv).expand(-1, p2, -1, -1, -1), # (n, p^2, p^2, w^2, c_kv) without mem cpy
dim=2,
index=r_idx.view(n, p2, topk, 1, 1).expand(-1, -1, -1, w2, c_kv) # (n, p^2, k, w^2, c_kv)
)
if self.mul_weight == 'soft':
topk_kv = r_weight.view(n, p2, topk, 1, 1) * topk_kv # (n, p^2, k, w^2, c_kv)
elif self.mul_weight == 'hard':
raise NotImplementedError('differentiable hard routing TBA')
return topk_kv
class QKVLinear(nn.Module):
def __init__(self, dim, qk_dim, bias=True):
super().__init__()
self.dim = dim
self.qk_dim = qk_dim
self.qkv = nn.Linear(dim, qk_dim + qk_dim + dim, bias=bias)
def forward(self, x):
q, kv = self.qkv(x).split([self.qk_dim, self.qk_dim+self.dim], dim=-1)
return q, kv
# q, k, v = self.qkv(x).split([self.qk_dim, self.qk_dim, self.dim], dim=-1)
# return q, k, v
class BiLevelRoutingAttention(nn.Module):
"""
n_win: number of windows in one side (so the actual number of windows is n_win*n_win)
kv_per_win: for kv_downsample_mode='ada_xxxpool' only, number of key/values per window. Similar to n_win, the actual number is kv_per_win*kv_per_win.
topk: topk for window filtering
param_attention: 'qkvo'-linear for q,k,v and o, 'none': param free attention
param_routing: extra linear for routing
diff_routing: wether to set routing differentiable
soft_routing: wether to multiply soft routing weights
"""
def __init__(self, dim, n_win=7, num_heads=8, qk_dim=None, qk_scale=None,
kv_per_win=4, kv_downsample_ratio=4, kv_downsample_kernel=None, kv_downsample_mode='identity',
topk=4, param_attention="qkvo", param_routing=False, diff_routing=False, soft_routing=False, side_dwconv=3,
auto_pad=True):
super().__init__()
# local attention setting
self.dim = dim
self.n_win = n_win # Wh, Ww
self.num_heads = num_heads
self.qk_dim = qk_dim or dim
assert self.qk_dim % num_heads == 0 and self.dim % num_heads==0, 'qk_dim and dim must be divisible by num_heads!'
self.scale = qk_scale or self.qk_dim ** -0.5
################side_dwconv (i.e. LCE in ShuntedTransformer)###########
self.lepe = nn.Conv2d(dim, dim, kernel_size=side_dwconv, stride=1, padding=side_dwconv//2, groups=dim) if side_dwconv > 0 else \
lambda x: torch.zeros_like(x)
################ global routing setting #################
self.topk = topk
self.param_routing = param_routing
self.diff_routing = diff_routing
self.soft_routing = soft_routing
# router
assert not (self.param_routing and not self.diff_routing) # cannot be with_param=True and diff_routing=False
self.router = TopkRouting(qk_dim=self.qk_dim,
qk_scale=self.scale,
topk=self.topk,
diff_routing=self.diff_routing,
param_routing=self.param_routing)
if self.soft_routing: # soft routing, always diffrentiable (if no detach)
mul_weight = 'soft'
elif self.diff_routing: # hard differentiable routing
mul_weight = 'hard'
else: # hard non-differentiable routing
mul_weight = 'none'
self.kv_gather = KVGather(mul_weight=mul_weight)
# qkv mapping (shared by both global routing and local attention)
self.param_attention = param_attention
if self.param_attention == 'qkvo':
self.qkv = QKVLinear(self.dim, self.qk_dim)
self.wo = nn.Linear(dim, dim)
elif self.param_attention == 'qkv':
self.qkv = QKVLinear(self.dim, self.qk_dim)
self.wo = nn.Identity()
else:
raise ValueError(f'param_attention mode {self.param_attention} is not surpported!')
self.kv_downsample_mode = kv_downsample_mode
self.kv_per_win = kv_per_win
self.kv_downsample_ratio = kv_downsample_ratio
self.kv_downsample_kenel = kv_downsample_kernel
if self.kv_downsample_mode == 'ada_avgpool':
assert self.kv_per_win is not None
self.kv_down = nn.AdaptiveAvgPool2d(self.kv_per_win)
elif self.kv_downsample_mode == 'ada_maxpool':
assert self.kv_per_win is not None
self.kv_down = nn.AdaptiveMaxPool2d(self.kv_per_win)
elif self.kv_downsample_mode == 'maxpool':
assert self.kv_downsample_ratio is not None
self.kv_down = nn.MaxPool2d(self.kv_downsample_ratio) if self.kv_downsample_ratio > 1 else nn.Identity()
elif self.kv_downsample_mode == 'avgpool':
assert self.kv_downsample_ratio is not None
self.kv_down = nn.AvgPool2d(self.kv_downsample_ratio) if self.kv_downsample_ratio > 1 else nn.Identity()
elif self.kv_downsample_mode == 'identity': # no kv downsampling
self.kv_down = nn.Identity()
elif self.kv_downsample_mode == 'fracpool':
# assert self.kv_downsample_ratio is not None
# assert self.kv_downsample_kenel is not None
# TODO: fracpool
# 1. kernel size should be input size dependent
# 2. there is a random factor, need to avoid independent sampling for k and v
raise NotImplementedError('fracpool policy is not implemented yet!')
elif kv_downsample_mode == 'conv':
# TODO: need to consider the case where k != v so that need two downsample modules
raise NotImplementedError('conv policy is not implemented yet!')
else:
raise ValueError(f'kv_down_sample_mode {self.kv_downsaple_mode} is not surpported!')
# softmax for local attention
self.attn_act = nn.Softmax(dim=-1)
self.auto_pad=auto_pad
def forward(self, x, ret_attn_mask=False):
"""
x: NHWC tensor
Return:
NHWC tensor
"""
x = rearrange(x, "n c h w -> n h w c")
if self.auto_pad:
N, H_in, W_in, C = x.size()
pad_l = pad_t = 0
pad_r = (self.n_win - W_in % self.n_win) % self.n_win
pad_b = (self.n_win - H_in % self.n_win) % self.n_win
x = F.pad(x, (0, 0, # dim=-1
pad_l, pad_r, # dim=-2
pad_t, pad_b)) # dim=-3
_, H, W, _ = x.size() # padded size
else:
N, H, W, C = x.size()
assert H%self.n_win == 0 and W%self.n_win == 0 #
# patchify, (n, p^2, w, w, c), keep 2d window as we need 2d pooling to reduce kv size
x = rearrange(x, "n (j h) (i w) c -> n (j i) h w c", j=self.n_win, i=self.n_win)
# q: (n, p^2, w, w, c_qk)
# kv: (n, p^2, w, w, c_qk+c_v)
# NOTE: separte kv if there were memory leak issue caused by gather
q, kv = self.qkv(x)
# pixel-wise qkv
# q_pix: (n, p^2, w^2, c_qk)
# kv_pix: (n, p^2, h_kv*w_kv, c_qk+c_v)
q_pix = rearrange(q, 'n p2 h w c -> n p2 (h w) c')
kv_pix = self.kv_down(rearrange(kv, 'n p2 h w c -> (n p2) c h w'))
kv_pix = rearrange(kv_pix, '(n j i) c h w -> n (j i) (h w) c', j=self.n_win, i=self.n_win)
q_win, k_win = q.mean([2, 3]), kv[..., 0:self.qk_dim].mean([2, 3]) # window-wise qk, (n, p^2, c_qk), (n, p^2, c_qk)
# NOTE: call contiguous to avoid gradient warning when using ddp
lepe = self.lepe(rearrange(kv[..., self.qk_dim:], 'n (j i) h w c -> n c (j h) (i w)', j=self.n_win, i=self.n_win).contiguous())
lepe = rearrange(lepe, 'n c (j h) (i w) -> n (j h) (i w) c', j=self.n_win, i=self.n_win)
r_weight, r_idx = self.router(q_win, k_win) # both are (n, p^2, topk) tensors
kv_pix_sel = self.kv_gather(r_idx=r_idx, r_weight=r_weight, kv=kv_pix) #(n, p^2, topk, h_kv*w_kv, c_qk+c_v)
k_pix_sel, v_pix_sel = kv_pix_sel.split([self.qk_dim, self.dim], dim=-1)
# kv_pix_sel: (n, p^2, topk, h_kv*w_kv, c_qk)
# v_pix_sel: (n, p^2, topk, h_kv*w_kv, c_v)
######### do attention as normal ####################
k_pix_sel = rearrange(k_pix_sel, 'n p2 k w2 (m c) -> (n p2) m c (k w2)', m=self.num_heads) # flatten to BMLC, (n*p^2, m, topk*h_kv*w_kv, c_kq//m) transpose here?
v_pix_sel = rearrange(v_pix_sel, 'n p2 k w2 (m c) -> (n p2) m (k w2) c', m=self.num_heads) # flatten to BMLC, (n*p^2, m, topk*h_kv*w_kv, c_v//m)
q_pix = rearrange(q_pix, 'n p2 w2 (m c) -> (n p2) m w2 c', m=self.num_heads) # to BMLC tensor (n*p^2, m, w^2, c_qk//m)
# param-free multihead attention
attn_weight = (q_pix * self.scale) @ k_pix_sel # (n*p^2, m, w^2, c) @ (n*p^2, m, c, topk*h_kv*w_kv) -> (n*p^2, m, w^2, topk*h_kv*w_kv)
attn_weight = self.attn_act(attn_weight)
out = attn_weight @ v_pix_sel # (n*p^2, m, w^2, topk*h_kv*w_kv) @ (n*p^2, m, topk*h_kv*w_kv, c) -> (n*p^2, m, w^2, c)
out = rearrange(out, '(n j i) m (h w) c -> n (j h) (i w) (m c)', j=self.n_win, i=self.n_win,
h=H//self.n_win, w=W//self.n_win)
out = out + lepe
# output linear
out = self.wo(out)
# NOTE: use padding for semantic segmentation
# crop padded region
if self.auto_pad and (pad_r > 0 or pad_b > 0):
out = out[:, :H_in, :W_in, :].contiguous()
if ret_attn_mask:
return out, r_weight, r_idx, attn_weight
else:
return rearrange(out, "n h w c -> n c h w")
class Attention(nn.Module):
"""
vanilla attention
"""
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
"""
args:
x: NCHW tensor
return:
NCHW tensor
"""
_, _, H, W = x.size()
x = rearrange(x, 'n c h w -> n (h w) c')
#######################################
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
#######################################
x = rearrange(x, 'n (h w) c -> n c h w', h=H, w=W)
return x
class AttentionLePE(nn.Module):
"""
vanilla attention
"""
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., side_dwconv=5):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.lepe = nn.Conv2d(dim, dim, kernel_size=side_dwconv, stride=1, padding=side_dwconv//2, groups=dim) if side_dwconv > 0 else \
lambda x: torch.zeros_like(x)
def forward(self, x):
"""
args:
x: NCHW tensor
return:
NCHW tensor
"""
_, _, H, W = x.size()
x = rearrange(x, 'n c h w -> n (h w) c')
#######################################
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
lepe = self.lepe(rearrange(x, 'n (h w) c -> n c h w', h=H, w=W))
lepe = rearrange(lepe, 'n c h w -> n (h w) c')
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = x + lepe
x = self.proj(x)
x = self.proj_drop(x)
#######################################
x = rearrange(x, 'n (h w) c -> n c h w', h=H, w=W)
return x
def _grid2seq(x:Tensor, region_size:Tuple[int], num_heads:int):
"""
Args:
x: BCHW tensor
region size: int
num_heads: number of attention heads
Return:
out: rearranged x, has a shape of (bs, nhead, nregion, reg_size, head_dim)
region_h, region_w: number of regions per col/row
"""
B, C, H, W = x.size()
region_h, region_w = H//region_size[0], W//region_size[1]
x = x.view(B, num_heads, C//num_heads, region_h, region_size[0], region_w, region_size[1])
x = torch.einsum('bmdhpwq->bmhwpqd', x).flatten(2, 3).flatten(-3, -2) # (bs, nhead, nregion, reg_size, head_dim)
return x, region_h, region_w
def _seq2grid(x:Tensor, region_h:int, region_w:int, region_size:Tuple[int]):
"""
Args:
x: (bs, nhead, nregion, reg_size^2, head_dim)
Return:
x: (bs, C, H, W)
"""
bs, nhead, nregion, reg_size_square, head_dim = x.size()
x = x.view(bs, nhead, region_h, region_w, region_size[0], region_size[1], head_dim)
x = torch.einsum('bmhwpqd->bmdhpwq', x).reshape(bs, nhead*head_dim,
region_h*region_size[0], region_w*region_size[1])
return x
def regional_routing_attention_torch(
query:Tensor, key:Tensor, value:Tensor, scale:float,
region_graph:LongTensor, region_size:Tuple[int],
kv_region_size:Optional[Tuple[int]]=None,
auto_pad=True)->Tensor:
"""
Args:
query, key, value: (B, C, H, W) tensor
scale: the scale/temperature for dot product attention
region_graph: (B, nhead, h_q*w_q, topk) tensor, topk <= h_k*w_k
region_size: region/window size for queries, (rh, rw)
key_region_size: optional, if None, key_region_size=region_size
auto_pad: required to be true if the input sizes are not divisible by the region_size
Return:
output: (B, C, H, W) tensor
attn: (bs, nhead, q_nregion, reg_size, topk*kv_region_size) attention matrix
"""
kv_region_size = kv_region_size or region_size
bs, nhead, q_nregion, topk = region_graph.size()
# Auto pad to deal with any input size
q_pad_b, q_pad_r, kv_pad_b, kv_pad_r = 0, 0, 0, 0
if auto_pad:
_, _, Hq, Wq = query.size()
q_pad_b = (region_size[0] - Hq % region_size[0]) % region_size[0]
q_pad_r = (region_size[1] - Wq % region_size[1]) % region_size[1]
if (q_pad_b > 0 or q_pad_r > 0):
query = F.pad(query, (0, q_pad_r, 0, q_pad_b)) # zero padding
_, _, Hk, Wk = key.size()
kv_pad_b = (kv_region_size[0] - Hk % kv_region_size[0]) % kv_region_size[0]
kv_pad_r = (kv_region_size[1] - Wk % kv_region_size[1]) % kv_region_size[1]
if (kv_pad_r > 0 or kv_pad_b > 0):
key = F.pad(key, (0, kv_pad_r, 0, kv_pad_b)) # zero padding
value = F.pad(value, (0, kv_pad_r, 0, kv_pad_b)) # zero padding
# to sequence format, i.e. (bs, nhead, nregion, reg_size, head_dim)
query, q_region_h, q_region_w = _grid2seq(query, region_size=region_size, num_heads=nhead)
key, _, _ = _grid2seq(key, region_size=kv_region_size, num_heads=nhead)
value, _, _ = _grid2seq(value, region_size=kv_region_size, num_heads=nhead)
# gather key and values.
# TODO: is seperate gathering slower than fused one (our old version) ?
# torch.gather does not support broadcasting, hence we do it manually
bs, nhead, kv_nregion, kv_region_size, head_dim = key.size()
broadcasted_region_graph = region_graph.view(bs, nhead, q_nregion, topk, 1, 1).\
expand(-1, -1, -1, -1, kv_region_size, head_dim)
key_g = torch.gather(key.view(bs, nhead, 1, kv_nregion, kv_region_size, head_dim).\
expand(-1, -1, query.size(2), -1, -1, -1), dim=3,
index=broadcasted_region_graph) # (bs, nhead, q_nregion, topk, kv_region_size, head_dim)
value_g = torch.gather(value.view(bs, nhead, 1, kv_nregion, kv_region_size, head_dim).\
expand(-1, -1, query.size(2), -1, -1, -1), dim=3,
index=broadcasted_region_graph) # (bs, nhead, q_nregion, topk, kv_region_size, head_dim)
# token-to-token attention
# (bs, nhead, q_nregion, reg_size, head_dim) @ (bs, nhead, q_nregion, head_dim, topk*kv_region_size)
# -> (bs, nhead, q_nregion, reg_size, topk*kv_region_size)
# TODO: mask padding region
attn = (query * scale) @ key_g.flatten(-3, -2).transpose(-1, -2)
attn = torch.softmax(attn, dim=-1)
# (bs, nhead, q_nregion, reg_size, topk*kv_region_size) @ (bs, nhead, q_nregion, topk*kv_region_size, head_dim)
# -> (bs, nhead, q_nregion, reg_size, head_dim)
output = attn @ value_g.flatten(-3, -2)
# to BCHW format
output = _seq2grid(output, region_h=q_region_h, region_w=q_region_w, region_size=region_size)
# remove paddings if needed
if auto_pad and (q_pad_b > 0 or q_pad_r > 0):
output = output[:, :, :Hq, :Wq]
return output, attn
CAA
https://export.arxiv.org/pdf/2403.06258
import torch.nn as nn
def autopad(kernel_size, padding=None, dilation=1):
"""
根据kernel_size, padding和dilation自动计算padding。
如果dilation大于1,则先调整kernel_size。
如果padding未指定,则使用kernel_size的一半作为padding(对于每个维度)。
"""
if dilation > 1:
kernel_size = dilation * (kernel_size - 1) + 1 if isinstance(kernel_size, int) else [dilation * (x - 1) + 1 for x in kernel_size]
if padding is None:
padding = kernel_size // 2 if isinstance(kernel_size, int) else [x // 2 for x in kernel_size]
return padding
class ConvLayer(nn.Module):
"""
标准的卷积层,包括卷积、批归一化和可选的激活函数。
"""
default_activation = nn.SiLU() # 默认激活函数
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=None, groups=1, dilation=1, activation=True):
"""
初始化卷积层。
参数:
- in_channels: 输入通道数
- out_channels: 输出通道数
- kernel_size: 卷积核大小
- stride: 卷积步长
- padding: 填充大小,如果为None则自动计算
- groups: 分组卷积的组数
- dilation: 空洞卷积的扩张率
- activation: 是否应用激活函数,或者指定一个激活函数
"""
super().__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, autopad(kernel_size, padding, dilation), groups=groups, dilation=dilation, bias=False)
self.bn = nn.BatchNorm2d(out_channels)
self.activation = self.default_activation if activation is True else activation if isinstance(activation, nn.Module) else nn.Identity()
def forward(self, x):
"""
对输入应用卷积、批归一化和激活函数。
"""
return self.activation(self.bn(self.conv(x)))
def forward_fuse(self, x):
"""
(注意:此方法名可能有些误导,因为它并没有执行融合操作,只是跳过了批归一化)
对输入应用卷积和激活函数,跳过批归一化。
"""
return self.activation(self.conv(x))
class CAA(nn.Module):
def __init__(self, channels, h_kernel_size=11, v_kernel_size=11):
"""
跨维度注意力聚合模块。
参数:
- channels: 输入和输出的通道数
- h_kernel_size: 水平卷积核大小
- v_kernel_size: 垂直卷积核大小
"""
super().__init__()
self.avg_pool = nn.AvgPool2d(7, stride=1, padding=3) # 使用padding=3来保持输出尺寸
self.conv1 = ConvLayer(channels, channels)
self.h_conv = nn.Conv2d(channels, channels, (1, h_kernel_size), stride=1, padding=(0, h_kernel_size // 2), groups=channels)
self.v_conv = nn.Conv2d(channels, channels, (v_kernel_size, 1), stride=1, padding=(v_kernel_size // 2, 0), groups=channels)
self.conv2 = ConvLayer(channels, channels)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
"""
计算注意力权重并将其应用于输入特征图。
"""
attn_factor = self.sigmoid(self.conv2(self.v_conv(self.h_conv(self.conv1(self.avg_pool(x))))))
return attn_factor * x
CBAM
import torch
from torch import nn
class ChannelAttention(nn.Module):
"""
通道注意力机制模块,使用Squeeze-and-Excitation (SE) 结构。
"""
def __init__(self, channels, reduction=16):
"""
初始化通道注意力模块。
参数:
- channels: 输入特征图的通道数。
- reduction: 压缩通道数的比例。
"""
super().__init__()
self.maxpool = nn.AdaptiveMaxPool2d(1) # 全局最大池化
self.avgpool = nn.AdaptiveAvgPool2d(1) # 全局平均池化
self.se_block = nn.Sequential( # SE结构
nn.Conv2d(channels, channels // reduction, 1, bias=False),
nn.ReLU(inplace=True),
nn.Conv2d(channels // reduction, channels, 1, bias=False)
)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
"""
前向传播,计算通道注意力权重。
"""
max_pooled = self.maxpool(x)
avg_pooled = self.avgpool(x)
max_out = self.se_block(max_pooled)
avg_out = self.se_block(avg_pooled)
output = self.sigmoid(max_out + avg_out)
return output
class SpatialAttention(nn.Module):
"""
空间注意力机制模块。
"""
def __init__(self, kernel_size=7):
"""
初始化空间注意力模块。
参数:
- kernel_size: 卷积核大小,用于空间注意力权重计算。
"""
super().__init__()
self.conv = nn.Conv2d(2, 1, kernel_size=kernel_size, padding=kernel_size // 2)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
"""
前向传播,计算空间注意力权重。
"""
max_result, _ = torch.max(x, dim=1, keepdim=True)
avg_result = torch.mean(x, dim=1, keepdim=True)
result = torch.cat([max_result, avg_result], dim=1)
output = self.conv(result)
output = self.sigmoid(output)
return output
class CBAM(nn.Module):
"""
CBAM注意力机制模块,结合了通道注意力和空间注意力。
"""
def __init__(self, channels=512, reduction=16, kernel_size=7):
"""
初始化CBAM模块。
参数:
- channels: 输入特征图的通道数。
- reduction: 通道注意力中压缩通道数的比例。
- kernel_size: 空间注意力中卷积核的大小。
"""
super().__init__()
self.channel_attention = ChannelAttention(channels=channels, reduction=reduction)
self.spatial_attention = SpatialAttention(kernel_size=kernel_size)
def forward(self, x):
"""
前向传播,依次应用通道注意力和空间注意力。
"""
out = x * self.channel_attention(x) # 应用通道注意力
out = out * self.spatial_attention(out) # 应用空间注意力
return out
if __name__ == '__main__':
# 示例用法
input_tensor = torch.randn(64, 512, 20, 20) # 假设输入特征图的形状为[batch_size, channels, height, width]
cbam_module = CBAM(channels=512, reduction=16, kernel_size=7)
output = cbam_module(input_tensor)
print(output.shape) # 输出应与输入形状相同
CloAttention
https://arxiv.org/pdf/2303.17803.pdf
import torch
import torch.nn as nn
class MemoryEfficientSwish(nn.Module):
# 节省内存的Swish 不采用自动求导(自己写前向传播和反向传播) 更高效
class F(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
# save_for_backward会保留x的全部信息(一个完整的外挂Autograd Function的Variable),
# 并提供避免in-place操作导致的input在backward被修改的情况.
# in-place操作指不通过中间变量计算的变量间的操作。
ctx.save_for_backward(x)
return x * torch.sigmoid(x)
@staticmethod
def backward(ctx, grad_output):
# 此处saved_tensors[0] 作用同上文 save_for_backward
x = ctx.saved_tensors[0]
sx = torch.sigmoid(x)
# 返回该激活函数求导之后的结果 求导过程见上文
return grad_output * (sx * (1 + x * (1 - sx)))
def forward(self, x): # 应用前向传播方法
return self.F.apply(x)
class AttnMap(nn.Module):
def __init__(self, dim):
super().__init__()
self.act_block = nn.Sequential(
nn.Conv2d(dim, dim, 1, 1, 0),
MemoryEfficientSwish(),
nn.Conv2d(dim, dim, 1, 1, 0)
)
def forward(self, x):
return self.act_block(x)
class EfficientAttention(nn.Module):
def __init__(self, dim, num_heads=8, group_split=[4, 4], kernel_sizes=[5], window_size=4,
attn_drop=0., proj_drop=0., qkv_bias=True):
super().__init__()
assert sum(group_split) == num_heads
assert len(kernel_sizes) + 1 == len(group_split)
self.dim = dim
self.num_heads = num_heads
self.dim_head = dim // num_heads
self.scalor = self.dim_head ** -0.5
self.kernel_sizes = kernel_sizes
self.window_size = window_size
self.group_split = group_split
convs = []
act_blocks = []
qkvs = []
#projs = []
for i in range(len(kernel_sizes)):
kernel_size = kernel_sizes[i]
group_head = group_split[i]
if group_head == 0:
continue
convs.append(nn.Conv2d(3*self.dim_head*group_head, 3*self.dim_head*group_head, kernel_size,
1, kernel_size//2, groups=3*self.dim_head*group_head))
act_blocks.append(AttnMap(self.dim_head*group_head))
qkvs.append(nn.Conv2d(dim, 3*group_head*self.dim_head, 1, 1, 0, bias=qkv_bias))
#projs.append(nn.Linear(group_head*self.dim_head, group_head*self.dim_head, bias=qkv_bias))
if group_split[-1] != 0:
self.global_q = nn.Conv2d(dim, group_split[-1]*self.dim_head, 1, 1, 0, bias=qkv_bias)
self.global_kv = nn.Conv2d(dim, group_split[-1]*self.dim_head*2, 1, 1, 0, bias=qkv_bias)
#self.global_proj = nn.Linear(group_split[-1]*self.dim_head, group_split[-1]*self.dim_head, bias=qkv_bias)
self.avgpool = nn.AvgPool2d(window_size, window_size) if window_size!=1 else nn.Identity()
self.convs = nn.ModuleList(convs)
self.act_blocks = nn.ModuleList(act_blocks)
self.qkvs = nn.ModuleList(qkvs)
self.proj = nn.Conv2d(dim, dim, 1, 1, 0, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj_drop = nn.Dropout(proj_drop)
def high_fre_attntion(self, x: torch.Tensor, to_qkv: nn.Module, mixer: nn.Module, attn_block: nn.Module):
'''
x: (b c h w)
'''
b, c, h, w = x.size()
qkv = to_qkv(x) #(b (3 m d) h w)
qkv = mixer(qkv).reshape(b, 3, -1, h, w).transpose(0, 1).contiguous() #(3 b (m d) h w)
q, k, v = qkv #(b (m d) h w)
attn = attn_block(q.mul(k)).mul(self.scalor)
attn = self.attn_drop(torch.tanh(attn))
res = attn.mul(v) #(b (m d) h w)
return res
def low_fre_attention(self, x : torch.Tensor, to_q: nn.Module, to_kv: nn.Module, avgpool: nn.Module):
'''
x: (b c h w)
'''
b, c, h, w = x.size()
q = to_q(x).reshape(b, -1, self.dim_head, h*w).transpose(-1, -2).contiguous() #(b m (h w) d)
kv = avgpool(x) #(b c h w)
kv = to_kv(kv).view(b, 2, -1, self.dim_head, (h*w)//(self.window_size**2)).permute(1, 0, 2, 4, 3).contiguous() #(2 b m (H W) d)
k, v = kv #(b m (H W) d)
attn = self.scalor * q @ k.transpose(-1, -2) #(b m (h w) (H W))
attn = self.attn_drop(attn.softmax(dim=-1))
res = attn @ v #(b m (h w) d)
res = res.transpose(2, 3).reshape(b, -1, h, w).contiguous()
return res
def forward(self, x: torch.Tensor):
'''
x: (b c h w)
'''
res = []
for i in range(len(self.kernel_sizes)):
if self.group_split[i] == 0:
continue
res.append(self.high_fre_attntion(x, self.qkvs[i], self.convs[i], self.act_blocks[i]))
if self.group_split[-1] != 0:
res.append(self.low_fre_attention(x, self.global_q, self.global_kv, self.avgpool))
return self.proj_drop(self.proj(torch.cat(res, dim=1)))
CrissCrossAttention
https://arxiv.org/pdf/1811.11721
'''
This code is borrowed from Serge-weihao/CCNet-Pure-Pytorch
'''
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import Softmax
def INF(B,H,W):
return -torch.diag(torch.tensor(float("inf")).cuda().repeat(H),0).unsqueeze(0).repeat(B*W,1,1)
class CrissCrossAttention(nn.Module):
""" Criss-Cross Attention Module"""
def __init__(self, in_dim):
super(CrissCrossAttention,self).__init__()
self.query_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim//8, kernel_size=1)
self.key_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim//8, kernel_size=1)
self.value_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim, kernel_size=1)
self.softmax = Softmax(dim=3)
self.INF = INF
self.gamma = nn.Parameter(torch.zeros(1))
def forward(self, x):
m_batchsize, _, height, width = x.size()
proj_query = self.query_conv(x)
proj_query_H = proj_query.permute(0,3,1,2).contiguous().view(m_batchsize*width,-1,height).permute(0, 2, 1)
proj_query_W = proj_query.permute(0,2,1,3).contiguous().view(m_batchsize*height,-1,width).permute(0, 2, 1)
proj_key = self.key_conv(x)
proj_key_H = proj_key.permute(0,3,1,2).contiguous().view(m_batchsize*width,-1,height)
proj_key_W = proj_key.permute(0,2,1,3).contiguous().view(m_batchsize*height,-1,width)
proj_value = self.value_conv(x)
proj_value_H = proj_value.permute(0,3,1,2).contiguous().view(m_batchsize*width,-1,height)
proj_value_W = proj_value.permute(0,2,1,3).contiguous().view(m_batchsize*height,-1,width)
energy_H = (torch.bmm(proj_query_H, proj_key_H)+self.INF(m_batchsize, height, width)).view(m_batchsize,width,height,height).permute(0,2,1,3)
energy_W = torch.bmm(proj_query_W, proj_key_W).view(m_batchsize,height,width,width)
concate = self.softmax(torch.cat([energy_H, energy_W], 3))
att_H = concate[:,:,:,0:height].permute(0,2,1,3).contiguous().view(m_batchsize*width,height,height)
#print(concate)
#print(att_H)
att_W = concate[:,:,:,height:height+width].contiguous().view(m_batchsize*height,width,width)
out_H = torch.bmm(proj_value_H, att_H.permute(0, 2, 1)).view(m_batchsize,width,-1,height).permute(0,2,3,1)
out_W = torch.bmm(proj_value_W, att_W.permute(0, 2, 1)).view(m_batchsize,height,-1,width).permute(0,2,1,3)
#print(out_H.size(),out_W.size())
return self.gamma*(out_H + out_W) + x
if __name__ == '__main__':
model = CrissCrossAttention(64)
x = torch.randn(2, 64, 5, 6)
out = model(x)
print(out.shape)
CoordAttention
import torch
import torch.nn as nn
import torch.nn.functional as F
class h_sigmoid(nn.Module):
def __init__(self, inplace=True):
super(h_sigmoid, self).__init__()
self.relu = nn.ReLU6(inplace=inplace)
def forward(self, x):
return self.relu(x + 3) / 6
class h_swish(nn.Module):
def __init__(self, inplace=True):
super(h_swish, self).__init__()
self.sigmoid = h_sigmoid(inplace=inplace)
def forward(self, x):
return x * self.sigmoid(x)
class CoordinateAttention(nn.Module):
def __init__(self, inp, reduction=32):
super(CoordAtt, self).__init__()
self.pool_h = nn.AdaptiveAvgPool2d((None, 1))
self.pool_w = nn.AdaptiveAvgPool2d((1, None))
mip = max(8, inp // reduction)
self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0)
self.bn1 = nn.BatchNorm2d(mip)
self.act = h_swish()
self.conv_h = nn.Conv2d(mip, inp, kernel_size=1, stride=1, padding=0)
self.conv_w = nn.Conv2d(mip, inp, kernel_size=1, stride=1, padding=0)
def forward(self, x):
identity = x
n, c, h, w = x.size()
x_h = self.pool_h(x)
x_w = self.pool_w(x).permute(0, 1, 3, 2)
y = torch.cat([x_h, x_w], dim=2)
y = self.conv1(y)
y = self.bn1(y)
y = self.act(y)
x_h, x_w = torch.split(y, [h, w], dim=2)
x_w = x_w.permute(0, 1, 3, 2)
a_h = self.conv_h(x_h).sigmoid()
a_w = self.conv_w(x_w).sigmoid()
out = identity * a_w * a_h
return out
if __name__ == '__main__':
input = torch.randn(64, 512, 20, 20)
pna = CoordinateAttention(inp=512)
output = pna(input)
print(output.shape)
CoTAttention
import numpy as np
import torch
from torch import flatten, nn
from torch.nn import init
from torch.nn.modules.activation import ReLU
from torch.nn.modules.batchnorm import BatchNorm2d
from torch.nn import functional as F
class CoTAttention(nn.Module):
def __init__(self, dim=512, kernel_size=3):
super().__init__()
self.dim = dim
self.kernel_size = kernel_size
self.key_embed = nn.Sequential(
nn.Conv2d(dim, dim, kernel_size=kernel_size, padding=kernel_size // 2, groups=4, bias=False),
nn.BatchNorm2d(dim),
nn.ReLU()
)
self.value_embed = nn.Sequential(
nn.Conv2d(dim, dim, 1, bias=False),
nn.BatchNorm2d(dim)
)
factor = 4
self.attention_embed = nn.Sequential(
nn.Conv2d(2 * dim, 2 * dim // factor, 1, bias=False),
nn.BatchNorm2d(2 * dim // factor),
nn.ReLU(),
nn.Conv2d(2 * dim // factor, kernel_size * kernel_size * dim, 1)
)
def forward(self, x):
bs, c, h, w = x.shape
k1 = self.key_embed(x) # bs,c,h,w
v = self.value_embed(x).view(bs, c, -1) # bs,c,h,w
y = torch.cat([k1, x], dim=1) # bs,2c,h,w
att = self.attention_embed(y) # bs,c*k*k,h,w
att = att.reshape(bs, c, self.kernel_size * self.kernel_size, h, w)
att = att.mean(2, keepdim=False).view(bs, c, -1) # bs,c,h*w
k2 = F.softmax(att, dim=-1) * v
k2 = k2.view(bs, c, h, w)
return k1 + k2
if __name__ == '__main__':
input = torch.randn(64, 512, 20, 20)
cot = CoTAttention(dim=512, kernel_size=3)
output = cot(input)
print(output.shape)
CPCA
import torch
import torch.nn as nn
import torch.nn.functional as F
class CPCA_ChannelAttention(nn.Module):
def __init__(self, input_channels, internal_neurons):
super(CPCA_ChannelAttention, self).__init__()
self.fc1 = nn.Conv2d(in_channels=input_channels, out_channels=internal_neurons, kernel_size=1, stride=1, bias=True)
self.fc2 = nn.Conv2d(in_channels=internal_neurons, out_channels=input_channels, kernel_size=1, stride=1, bias=True)
self.input_channels = input_channels
def forward(self, inputs):
x1 = F.adaptive_avg_pool2d(inputs, output_size=(1, 1))
x1 = self.fc1(x1)
x1 = F.relu(x1, inplace=True)
x1 = self.fc2(x1)
x1 = torch.sigmoid(x1)
x2 = F.adaptive_max_pool2d(inputs, output_size=(1, 1))
x2 = self.fc1(x2)
x2 = F.relu(x2, inplace=True)
x2 = self.fc2(x2)
x2 = torch.sigmoid(x2)
x = x1 + x2
x = x.view(-1, self.input_channels, 1, 1)
return inputs * x
class CPCA(nn.Module):
def __init__(self, channels, channelAttention_reduce=4):
super().__init__()
self.ca = CPCA_ChannelAttention(input_channels=channels, internal_neurons=channels // channelAttention_reduce)
self.dconv5_5 = nn.Conv2d(channels,channels,kernel_size=5,padding=2,groups=channels)
self.dconv1_7 = nn.Conv2d(channels,channels,kernel_size=(1,7),padding=(0,3),groups=channels)
self.dconv7_1 = nn.Conv2d(channels,channels,kernel_size=(7,1),padding=(3,0),groups=channels)
self.dconv1_11 = nn.Conv2d(channels,channels,kernel_size=(1,11),padding=(0,5),groups=channels)
self.dconv11_1 = nn.Conv2d(channels,channels,kernel_size=(11,1),padding=(5,0),groups=channels)
self.dconv1_21 = nn.Conv2d(channels,channels,kernel_size=(1,21),padding=(0,10),groups=channels)
self.dconv21_1 = nn.Conv2d(channels,channels,kernel_size=(21,1),padding=(10,0),groups=channels)
self.conv = nn.Conv2d(channels,channels,kernel_size=(1,1),padding=0)
self.act = nn.GELU()
def forward(self, inputs):
# Global Perceptron
inputs = self.conv(inputs)
inputs = self.act(inputs)
inputs = self.ca(inputs)
x_init = self.dconv5_5(inputs)
x_1 = self.dconv1_7(x_init)
x_1 = self.dconv7_1(x_1)
x_2 = self.dconv1_11(x_init)
x_2 = self.dconv11_1(x_2)
x_3 = self.dconv1_21(x_init)
x_3 = self.dconv21_1(x_3)
x = x_1 + x_2 + x_3 + x_init
spatial_att = self.conv(x)
out = spatial_att * inputs
out = self.conv(out)
return out
DAttention
import torch, einops
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from timm.models.layers import trunc_normal_
class LayerNormProxy(nn.Module):
def __init__(self, dim):
super().__init__()
self.norm = nn.LayerNorm(dim)
def forward(self, x):
x = einops.rearrange(x, 'b c h w -> b h w c')
x = self.norm(x)
return einops.rearrange(x, 'b h w c -> b c h w')
class DAttention(nn.Module):
# Vision Transformer with Deformable Attention CVPR2022
# fixed_pe=True need adujust 640x640
def __init__(
self, channel, q_size, n_heads=8, n_groups=4,
attn_drop=0.0, proj_drop=0.0, stride=1,
offset_range_factor=4, use_pe=True, dwc_pe=True,
no_off=False, fixed_pe=False, ksize=3, log_cpb=False, kv_size=None
):
super().__init__()
n_head_channels = channel // n_heads
self.dwc_pe = dwc_pe
self.n_head_channels = n_head_channels
self.scale = self.n_head_channels ** -0.5
self.n_heads = n_heads
self.q_h, self.q_w = q_size
# self.kv_h, self.kv_w = kv_size
self.kv_h, self.kv_w = self.q_h // stride, self.q_w // stride
self.nc = n_head_channels * n_heads
self.n_groups = n_groups
self.n_group_channels = self.nc // self.n_groups
self.n_group_heads = self.n_heads // self.n_groups
self.use_pe = use_pe
self.fixed_pe = fixed_pe
self.no_off = no_off
self.offset_range_factor = offset_range_factor
self.ksize = ksize
self.log_cpb = log_cpb
self.stride = stride
kk = self.ksize
pad_size = kk // 2 if kk != stride else 0
self.conv_offset = nn.Sequential(
nn.Conv2d(self.n_group_channels, self.n_group_channels, kk, stride, pad_size, groups=self.n_group_channels),
LayerNormProxy(self.n_group_channels),
nn.GELU(),
nn.Conv2d(self.n_group_channels, 2, 1, 1, 0, bias=False)
)
if self.no_off:
for m in self.conv_offset.parameters():
m.requires_grad_(False)
self.proj_q = nn.Conv2d(
self.nc, self.nc,
kernel_size=1, stride=1, padding=0
)
self.proj_k = nn.Conv2d(
self.nc, self.nc,
kernel_size=1, stride=1, padding=0
)
self.proj_v = nn.Conv2d(
self.nc, self.nc,
kernel_size=1, stride=1, padding=0
)
self.proj_out = nn.Conv2d(
self.nc, self.nc,
kernel_size=1, stride=1, padding=0
)
self.proj_drop = nn.Dropout(proj_drop, inplace=True)
self.attn_drop = nn.Dropout(attn_drop, inplace=True)
if self.use_pe and not self.no_off:
if self.dwc_pe:
self.rpe_table = nn.Conv2d(
self.nc, self.nc, kernel_size=3, stride=1, padding=1, groups=self.nc)
elif self.fixed_pe:
self.rpe_table = nn.Parameter(
torch.zeros(self.n_heads, self.q_h * self.q_w, self.kv_h * self.kv_w)
)
trunc_normal_(self.rpe_table, std=0.01)
elif self.log_cpb:
# Borrowed from Swin-V2
self.rpe_table = nn.Sequential(
nn.Linear(2, 32, bias=True),
nn.ReLU(inplace=True),
nn.Linear(32, self.n_group_heads, bias=False)
)
else:
self.rpe_table = nn.Parameter(
torch.zeros(self.n_heads, self.q_h * 2 - 1, self.q_w * 2 - 1)
)
trunc_normal_(self.rpe_table, std=0.01)
else:
self.rpe_table = None
@torch.no_grad()
def _get_ref_points(self, H_key, W_key, B, dtype, device):
ref_y, ref_x = torch.meshgrid(
torch.linspace(0.5, H_key - 0.5, H_key, dtype=dtype, device=device),
torch.linspace(0.5, W_key - 0.5, W_key, dtype=dtype, device=device),
indexing='ij'
)
ref = torch.stack((ref_y, ref_x), -1)
ref[..., 1].div_(W_key - 1.0).mul_(2.0).sub_(1.0)
ref[..., 0].div_(H_key - 1.0).mul_(2.0).sub_(1.0)
ref = ref[None, ...].expand(B * self.n_groups, -1, -1, -1) # B * g H W 2
return ref
@torch.no_grad()
def _get_q_grid(self, H, W, B, dtype, device):
ref_y, ref_x = torch.meshgrid(
torch.arange(0, H, dtype=dtype, device=device),
torch.arange(0, W, dtype=dtype, device=device),
indexing='ij'
)
ref = torch.stack((ref_y, ref_x), -1)
ref[..., 1].div_(W - 1.0).mul_(2.0).sub_(1.0)
ref[..., 0].div_(H - 1.0).mul_(2.0).sub_(1.0)
ref = ref[None, ...].expand(B * self.n_groups, -1, -1, -1) # B * g H W 2
return ref
def forward(self, x):
B, C, H, W = x.size()
dtype, device = x.dtype, x.device
q = self.proj_q(x)
q_off = einops.rearrange(q, 'b (g c) h w -> (b g) c h w', g=self.n_groups, c=self.n_group_channels)
offset = self.conv_offset(q_off).contiguous() # B * g 2 Hg Wg
Hk, Wk = offset.size(2), offset.size(3)
n_sample = Hk * Wk
if self.offset_range_factor >= 0 and not self.no_off:
offset_range = torch.tensor([1.0 / (Hk - 1.0), 1.0 / (Wk - 1.0)], device=device).reshape(1, 2, 1, 1)
offset = offset.tanh().mul(offset_range).mul(self.offset_range_factor)
offset = einops.rearrange(offset, 'b p h w -> b h w p')
reference = self._get_ref_points(Hk, Wk, B, dtype, device)
if self.no_off:
offset = offset.fill_(0.0)
if self.offset_range_factor >= 0:
pos = offset + reference
else:
pos = (offset + reference).clamp(-1., +1.)
if self.no_off:
x_sampled = F.avg_pool2d(x, kernel_size=self.stride, stride=self.stride)
assert x_sampled.size(2) == Hk and x_sampled.size(3) == Wk, f"Size is {x_sampled.size()}"
else:
pos = pos.type(x.dtype)
x_sampled = F.grid_sample(
input=x.reshape(B * self.n_groups, self.n_group_channels, H, W),
grid=pos[..., (1, 0)], # y, x -> x, y
mode='bilinear', align_corners=True) # B * g, Cg, Hg, Wg
x_sampled = x_sampled.reshape(B, C, 1, n_sample)
q = q.reshape(B * self.n_heads, self.n_head_channels, H * W)
k = self.proj_k(x_sampled).reshape(B * self.n_heads, self.n_head_channels, n_sample)
v = self.proj_v(x_sampled).reshape(B * self.n_heads, self.n_head_channels, n_sample)
attn = torch.einsum('b c m, b c n -> b m n', q, k) # B * h, HW, Ns
attn = attn.mul(self.scale)
if self.use_pe and (not self.no_off):
if self.dwc_pe:
residual_lepe = self.rpe_table(q.reshape(B, C, H, W)).reshape(B * self.n_heads, self.n_head_channels, H * W)
elif self.fixed_pe:
rpe_table = self.rpe_table
attn_bias = rpe_table[None, ...].expand(B, -1, -1, -1)
attn = attn + attn_bias.reshape(B * self.n_heads, H * W, n_sample)
elif self.log_cpb:
q_grid = self._get_q_grid(H, W, B, dtype, device)
displacement = (q_grid.reshape(B * self.n_groups, H * W, 2).unsqueeze(2) - pos.reshape(B * self.n_groups, n_sample, 2).unsqueeze(1)).mul(4.0) # d_y, d_x [-8, +8]
displacement = torch.sign(displacement) * torch.log2(torch.abs(displacement) + 1.0) / np.log2(8.0)
attn_bias = self.rpe_table(displacement) # B * g, H * W, n_sample, h_g
attn = attn + einops.rearrange(attn_bias, 'b m n h -> (b h) m n', h=self.n_group_heads)
else:
rpe_table = self.rpe_table
rpe_bias = rpe_table[None, ...].expand(B, -1, -1, -1)
q_grid = self._get_q_grid(H, W, B, dtype, device)
displacement = (q_grid.reshape(B * self.n_groups, H * W, 2).unsqueeze(2) - pos.reshape(B * self.n_groups, n_sample, 2).unsqueeze(1)).mul(0.5)
attn_bias = F.grid_sample(
input=einops.rearrange(rpe_bias, 'b (g c) h w -> (b g) c h w', c=self.n_group_heads, g=self.n_groups),
grid=displacement[..., (1, 0)],
mode='bilinear', align_corners=True) # B * g, h_g, HW, Ns
attn_bias = attn_bias.reshape(B * self.n_heads, H * W, n_sample)
attn = attn + attn_bias
attn = F.softmax(attn, dim=2)
attn = self.attn_drop(attn)
out = torch.einsum('b m n, b c n -> b c m', attn, v)
if self.use_pe and self.dwc_pe:
out = out + residual_lepe
out = out.reshape(B, C, H, W)
y = self.proj_drop(self.proj_out(out))
return y