PyTorch中实现Transformer模型

前言

对于论文给出的模型架构,使用 PyTorch 分别实现各个部分。

命名transformer.py,引入的相关库函数:

import copy
import torch
import math
from torch import nn
from torch.nn.functional import log_softmax

# module: 需要深拷贝的模块
# n: 拷贝的次数
# return: 深拷贝后的模块列表
def clones(module, n: int):
    return nn.ModuleList([copy.deepcopy(module) for _ in range(n)])

1. 编码器与解码器堆叠

Encoder 编码器

编码器由 N 个相同的编码层堆叠而成,每个编码层含两个子层:多头注意力层和前馈网络层。每个子层后跟着一层,用于残差连接与标准化。

Add & Norm 残差连接和标准化

对于上一层的结果:\({\rm SubLayer}(x)\)与输出上一层的变量:\(x\)做残差连接并进行标准化:\({\rm LayerNorm}(x + {\rm Sublayer}(x))\)。

# 层标准化
class LayerNorm(nn.Module):
    # 设置 features 形状的张量作为可学习的参数,初始化
    def __init__(self, features, eps=1e-6):
        super(LayerNorm, self).__init__()
        # 初始化两个参数,α为权重,β为偏置
        self.a_2 = nn.Parameter(torch.ones(features))  
        self.b_2 = nn.Parameter(torch.zeros(features))
        self.eps = eps

    def forward(self, x):
        # 计算最后一个维度的均值、方差
        mean = x.mean(-1, keepdim=True)  
        std = x.std(-1, keepdim=True)
        return self.a_2 * (x - mean) / (std + self.eps) + self.b_2

# 子层残差连接
class SublayerConnection(nn.Module):
    # size: 参数矩阵的shape, 
    # dropout_prob: dropout概率
    def __init__(self, size, dropout_prob):
        super(SublayerConnection, self).__init__()
        self.norm = LayerNorm(size)
        self.dropout = nn.Dropout(p=dropout_prob)

    def forward(self, x, sublayer):
        return x + self.dropout(sublayer(self.norm(x)))

  • nn.Dropout()初始化参数p表示训练时,以概率 p 将输入张量的一些元素归零,对于没有归零的元素将乘以\(\frac{1}{1-p}\)。
  • 输入为任意形状的张量,输出为与输入张量形状相同并经过处理的张量。[Source]

Multi-Head Attention 多头注意力层

计算点乘注意力:$ \mathrm{Attention}(Q, K, V) = \mathrm{softmax}(\frac{QK^T}{\sqrt{d_k}})V$

# q, k, v: 表示公式中的 Q, K, V
# mask: 当输入存在掩码时,将 mask 对应位置设置为负无穷
# dropout: dropout层
# return: 注意力层的输出,以及注意力权重
def attention(q, k, v, mask=None, dropout=None):
    d_k = q.size(-1)
    scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(d_k)
    if mask is not None:
        scores = scores.masked_fill(mask == 0, -1e9)
    p_attn = scores.softmax(dim=-1)
    if dropout is not None:
        p_attn = dropout(p_attn)
    
    return torch.matmul(p_attn, v), p_attn 

# 多头注意力
class MultiHeadedAttention(nn.Module):
    # h: 多头注意力的头数
    # d_model: 嵌入词的维度
    def __init__(self, h, d_model, dropout_prob=0.1):
        super(MultiHeadedAttention, self).__init__()
        assert d_model % h == 0
        self.d_k = d_model // h
        self.h = h
        self.linears = clones(nn.Linear(d_model, d_model), 4)
        self.attn = None
        self.dropout = nn.Dropout(p=dropout_prob)

    def forward(self, q, k, v, mask=None):
        if mask is not None:
            mask = mask.unsqueeze(1) # 相同的mask应用于所有的注意力头h
        batch_size = q.size(0)

        # 1) 执行线性变换,将 d_model 维度的 x 分割成 h 个 d_k 维度
        q, k, v = [
            # 通过 view 改变张量形状,并使用 transpose 方法交换张量维度
            lin(x).view(batch_size, -1, self.h, self.d_k).transpose(1, 2)
            for lin, x in zip(self.linears, (q, k, v))
        ]

        # 2) 将 attention 用于每个 batch 的投影向量上
        x, self.attn = attention(q, k, v, mask=mask, dropout=self.dropout)

        # 3) 通过线性层连接多头注意力计算完的向量
        x = x.transpose(1, 2).contiguous().view(batch_size, -1, self.h * self.d_k)
        return self.linears[-1](x)

关于contiguous()transpose()不改变张量物理上的存储顺序,而是改变了查看时逻辑上的顺序,使得在内存上不连续(可以通过is_contiguous()查看张量是否是连续的)。

如果不是连续的,可以通过contiguous()方法返回内存上连续、数值上相同的张量。view()方法改变张量的形状需要张量是连续的。[Source]

Feed Forward 前馈网络层

由两个线性层组成,中间使用 ReLU 激活函数:\(\mathrm{FFN}(x)=\max(0, xW_1 + b_1) W_2 + b_2\)

# 基于位置的前馈网络
class PositionwiseFeedForward(nn.Module):
    # d_model: 嵌入词的维度
    # d_ff: 前馈网络中间层的维度
    def __init__(self, d_model, d_ff, dropout_prob=0.1):
        super(PositionwiseFeedForward, self).__init__()
        self.w_1 = nn.Linear(d_model, d_ff)
        self.w_2 = nn.Linear(d_ff, d_model)
        self.dropout = nn.Dropout(p=dropout_prob)

    def forward(self, x):
        return self.w_2(self.dropout(self.w_1(x).relu()))

编码层

每个编码层,含一个多头注意力层,一个前馈网络层,以及两个用于残差连接与标准化层分别跟在两个子层后面。N 个编码层组成编码器,每层的编码层的输出作为下一层的输入。

# 编码层
class EncoderLayer(nn.Module):
    # size: 参数矩阵的shape,
    # self_attn: 多头注意力层
    # feed_forward: 前馈网络层
    # dropout_prob: dropout概率
    def __init__(self, size, self_attn, feed_forward, dropout_prob):
        super(EncoderLayer, self).__init__()
        self.self_attn = self_attn
        self.feed_forward = feed_forward
        self.sublayer = clones(SublayerConnection(size, dropout_prob), 2)
        self.size = size

    def forward(self, x, mask):
        x = self.sublayer[0](x, lambda i: self.self_attn(i, i, i, mask))
        return self.sublayer[1](x, self.feed_forward)

# 编码器:由 N 个相同的层组成
class Encoder(nn.Module):
    def __init__(self, layer, n):
        super(Encoder, self).__init__()
        self.layers = clones(layer, n)
        self.norm = LayerNorm(layer.size)

    def forward(self, x, mask):
        for layer in self.layers:
            x = layer(x, mask)
        return self.norm(x)

EncoderLayerforward()内的x = self.sublayer[0](x, lambda i: self.self_attn(i, i, i, mask)),虽然此处输入的 q,k,v 均为 i 但在注意力层内,它们将分别与对应的 Q,K,V 矩阵(由线性层Linear实现)相乘,得到用于计算注意力的 q,k,v 。

Decoder 解码器

解码器由 N 层解码层组成。结构与编码层相似,由三个子层组成:带掩码的多头注意力层,多头注意力层和前馈网络层。每个子层后跟着一层,用于残差连接与标准化。

对于第二个子层,输入每一解码层的 K,V 为Encoder(第 N 层的编码层)的输出。为了区别输入Encoder和Decoder的嵌入词,分别用 src(Source,源) 和 tgt(Target,目标) 表示。

# 解码层:由多头注意力层、源-目标注意力层和前馈神经网络组成
class DecoderLayer(nn.Module):
    # size: 参数矩阵的shape,
    # self_attn: 多头注意力层
    # src_attn: 源-目标注意力层
    # feed_forward: 前馈网络层
    # dropout_prob: dropout概率
    def __init__(self, size, self_attn, src_attn, feed_forward, dropout_prob):
        super(DecoderLayer, self).__init__()
        self.size = size
        self.self_attn = self_attn
        self.src_attn = src_attn
        self.feed_forward = feed_forward
        self.sublayer = clones(SublayerConnection(size, dropout_prob), 3)

    # x: 解码曾输入
    # memory: 编码器的输出
    # src_mask: 源嵌入词掩码
    # tgt_mask: 目标嵌入词掩码
    # return: 解码层的输出
    def forward(self, x, memory, src_mask, tgt_mask):
        m = memory
        x = self.sublayer[0](x, lambda i: self.self_attn(i, i, i, tgt_mask))
        x = self.sublayer[1](x, lambda i: self.src_attn(i, m, m, src_mask))
        return self.sublayer[2](x, self.feed_forward)


# 解码器:由 N 个相同的层组成
class Decoder(nn.Module):
    def __init__(self, layer, n):
        super(Decoder, self).__init__()
        self.layers = clones(layer, n)
        self.norm = LayerNorm(layer.size)

    def forward(self, x, memory, src_mask, tgt_mask):
        for layer in self.layers:
            x = layer(x, memory, src_mask, tgt_mask)
        return self.norm(x)

2. Generator 生成器

生成器将解码器的输出映射到词汇表上,由一个线性层和一个 softmax 层组成,用于预测下一个token的概率。

# 生成器:线性层和 softmax 层
class Generator(nn.Module):
    # d_model: 解码器输出的(嵌入词)向量维度
    # vocab: 词汇表的维度大小
    def __init__(self, d_model, vocab):
        super(Generator, self).__init__()
        self.proj = nn.Linear(d_model, vocab)

    def forward(self, x):
        return log_softmax(self.proj(x), dim=-1)  # 对最后一个维度进行 softmax

3. Embedding 嵌入层

使用nn.Embedding构建查找表(Look-Up Table, LUT)。[Source]

  • 初始化时,num_embedding表示嵌入字典大小;embedding_dim表示每个嵌入词向量的维度大小。
  • forward()中使用时,输入维度为\(d\)的张量,返回维度为 \(d\times {\rm embedding\_dim}\) 的张量。

文中,作者还将嵌入层返回的张量乘以\(\sqrt{d_{model}}\)。

class Embeddings(nn.Module):
    def __init__(self, d_model, vocab):
        super(Embeddings, self).__init__()
        self.lut = nn.Embedding(num_embeddings=vocab, embedding_dim=d_model)
        self.d_model = d_model

    def forward(self, x):
        return self.lut(x) * math.sqrt(self.d_model)

4. Positional Encoding 位置编码

为了使模型学习文本的顺序信息,需要引入位置编码:

\[\begin{cases} PE_{(pos,2i)} = \sin(pos / 10000^{2i/d_{\text{model}}}) \\ PE_{(pos,2i+1)} = \cos(pos / 10000^{2i/d_{\text{model}}}) \end{cases} \]

class PositionalEncoding(nn.Module):
    def __init__(self, d_model, dropout_prob, max_len=5000):
        super(PositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(p=dropout_prob)

        # 计算位置编码
        pe = torch.zeros(max_len, d_model)  # Shape: max_len x d_model
        position = torch.arange(0, max_len).unsqueeze(1)  # Shape: max_len x 1
        div_term = torch.exp(torch.arange(0, d_model, 2) * -(math.log(10000) / d_model))
        res = position * div_term  # Shape: max_len x d_model/2
        pe[:, 0::2] = torch.sin(res)
        pe[:, 1::2] = torch.cos(res)
        pe = pe.unsqueeze(0)  # Shape: 1 x max_len x d_model
        self.register_buffer('pe', pe)

    def forward(self, x):
        x = x + self.pe[:, :x.size(1)].requires_grad_(False)
        return self.dropout(x)

self.register_buffer()用于将模型训练参数之外的变量注册加缓存,通过register_buffer()登记过的张量,会自动成为模型中的参数,随着模型移动(gpu/cpu)而移动,但是不会随着梯度进行更新。

在PyTorch中,对于梯度更新的需求,有着不同的张量定义方式[2]。

测试:添加位置编码后,embeddings 的变化。

相关测试代码(在 Jupyter Notebook 中使用 altair 库绘制):

from transformer import PositionalEncoding
import torch
import pandas as pd
import altair as alt
def example_positional():
    d_model = 20
    max_len = 100
    pe = PositionalEncoding(d_model, 0)
    y = pe.forward(torch.zeros(1, max_len, d_model))
    data = pd.concat([  # Shape: (400, 3)
        pd.DataFrame({
            "embedding": y[0, :, dim],
            "dimension": dim,
            "position": list(range(max_len))
        })
        for dim in [2, 4, 6, 8]
    ])
    return (
        alt.Chart(data)
        .mark_line()
        .properties(width=800)
        .encode(x="position", y="embedding", color="dimension:N")
        .interactive()
    )
example_positional()

5. 整体架构

class EncoderDecoder(nn.Module):
    # encoder: 编码器
    # decoder: 解码器
    # src_embed: 源嵌入层
    # tgt_embed: 目标嵌入层
    # generator: 生成器
    def __init__(self, encoder, decoder, src_embed, tgt_embed, generator):
        super(EncoderDecoder, self).__init__()
        self.encoder = encoder
        self.decoder = decoder
        self.src_embed = src_embed
        self.tgt_embed = tgt_embed
        self.generator = generator

    # src: 源语言句子
    # src_mask: 源语言句子掩码
    def encode(self, src, src_mask):
        return self.encoder(self.src_embed(src), src_mask)  # 编码器

    # memory: 编码器的输出
    # src_mask: 源语言句子掩码
    # tgt: 目标语言句子
    # tgt_mask: 目标语言句子掩码
    def decode(self, memory, src_mask, tgt, tgt_mask):
        return self.decoder(self.tgt_embed(tgt), memory, src_mask, tgt_mask)

    def forward(self, src, tgt, src_mask, tgt_mask):
        memory = self.encode(src, src_mask)
        res_dec = self.decode(memory, src_mask, tgt, tgt_mask)
        return self.generator(res_dec)

src_vocab: 源语言词典大小

tgt_vocab: 目标语言词典大小

n: 编码器和解码器的层数

d_model: 嵌入词的维度

d_ff: 前馈网络中间层的维度

h: 多头注意力的头数

dropout_prb: dropout概率

return: Transformer 模型

def make_model(src_vocab, tgt_vocab, n=6, d_model=512, d_ff=2048, h=8, dropout_prb=0.1):
    c = copy.deepcopy
    attn = MultiHeadedAttention(h, d_model)
    ff = PositionwiseFeedForward(d_model, d_ff, dropout_prb)
    position = PositionalEncoding(d_model, dropout_prb)
    model = EncoderDecoder(
        Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout_prb), n),
        Decoder(DecoderLayer(d_model, c(attn), c(attn), c(ff), dropout_prb), n),
        nn.Sequential(Embeddings(d_model, src_vocab), c(position)),
        nn.Sequential(Embeddings(d_model, tgt_vocab), c(position)),
        Generator(d_model, tgt_vocab),
    )
    # 初始化参数
    for p in model.parameters():
        if p.dim() > 1:
            nn.init.xavier_uniform_(p)
    return model

最后的最后

感谢你们的阅读和喜欢,我收藏了很多技术干货,可以共享给喜欢我文章的朋友们,如果你肯花时间沉下心去学习,它们一定能帮到你。

因为这个行业不同于其他行业,知识体系实在是过于庞大,知识更新也非常快。作为一个普通人,无法全部学完,所以我们在提升技术的时候,首先需要明确一个目标,然后制定好完整的计划,同时找到好的学习方法,这样才能更快的提升自己。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

五、面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下。
在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/726916.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

DLS Markets:日本银行豪赌美债巨亏,危机是否重演?

摘要 日本第五大银行Norinchukin Bank农林中央金库宣布大规模抛售美债,以弥补因利率上升导致的巨额损失。这一决定引发市场关注,担忧是否会引发一场美债“清仓甩卖”。本文详细分析了Norinchukin的背景、抛售美债的原因及其对全球金融市场的潜在影响。 …

2024年,计算机相关专业依旧是热门选择吗?未来趋势大揭秘!

文章目录 引言一、行业竞争现状二、专业与个人的匹配度判断三、专业前景分析总结 引言 在科技日新月异的今天,计算机专业一直以其强大的实用性和广阔的就业前景吸引着无数学子的目光。然而,随着人工智能、大数据、云计算等领域的飞速发展,我…

设计软件有哪些?景观插件篇,渲染100邀请码1a12

建立大型景观也是设计师常用的设计方法,我们介绍一些景观插件。 1、AutoGrass AutoGrass是用于快速生成逼真的草地和植被场景的3ds Max插件,它提供了大量的草地预设和工具,使用户能够轻松地创建各种各样的草地效果,包括草地、草…

磁盘未格式化:深度解析、恢复策略与预防措施

一、磁盘未格式化的定义与现象 在计算机存储领域,磁盘未格式化通常指的是磁盘分区或整个磁盘的文件系统信息出现丢失或损坏的情况,导致操作系统无法正确读取和识别磁盘上的数据。当尝试访问这样的磁盘时,系统往往会弹出一个警告框&#xff0…

package.json简介

1、package.json简介 通过 npm init 初始化一个项目,会生成3个目录/文件, node_modules, package.json和 package.lock.json。其中package-lock.json文件是为了锁版本。 2、package.json常用属性 1)name name是项目的名称,命名…

Linux下手动修改服务器时间(没网环境下)

在客户服务器上更新程序时,发现服务器时间不对,现在应该是下午13:44:00,但服务器却显示为:21:40:53,所有是不对的。 date解决办法: 1、由于服务器是没有网的,只能手动设置时间,输入…

森林火灾扑救特类车辆有哪些_鼎跃安全

森林消防是在森林火灾发生时,为了保护森林资源,防止火势蔓延,采取了一系列的应用措施,针对自然环境中的火灾消防工作。森林灭火主要包括预警、预防措施、火情监测、火势控制和灭火等,森林火灾发生的地形往往复杂崎岖&a…

XMind 2024软件最新版下载及详细安装教程

​人所共知的是XMind 在公司和教育领域都有很广泛的应用,在公司中它能够用来进行会议管理、项目管理、信息管理、计划和XMind 被认为是一种新一代演示软件的模式。也就是说XMind不仅能够绘制思维导图,还能够绘制鱼骨图、二维图、树形图、逻辑图、组织结构…

Ubuntu server 24 (Linux) 安装lua + 卸载软件

1 apt 安装 # sudo apt update #查看可安装的lua版本 sudo apt-get install luaversion # sudo apt-get install lua5.3 #查看版本 testiZbp1g7fmjea77vsqc5hmmZ:/data/soft$ lua -v Lua 5.3.6 Copyright (C) 1994-2020 Lua.org, PUC-Rio2 Ubuntu卸载软件 #查找lua已安装…

fyne的VBox布局02

VBox布局02 最常用的布局是layout.BoxLayout,它有两种变体,水平和垂直。box布局将所有元素排列在单行或单列中,并带有可选的空格以帮助对齐。 一步一步实现一个如下界面布局,这个界面可以使用VBox布局来实现。 这次添加了2个复…

吴恩达机器学习 第三课 week1 无监督机器学习(下)

目录 01 学习目标 02 异常检测算法 2.1 异常检测算法的概念 2.2 基于高斯模型的异常检测 03 利用异常检测算法检测网络服务器的故障 3.1 问题描述 3.2 算法实现 3.3 问题升级 04 总结 01 学习目标 (1)理解异常检测算法(Anomaly Dete…

vue2实现打印功能(vue-print-nb的实现)

实现效果&#xff1a; 引入插件 npm install vue-print-nb --save import Print from vue-print-nb Vue.use(Print) <div ref"printTest" id"printTest"><div style"text-align: center; page-break-after: always"><div style…

强化学习——基本概念

何为强化学习 机器学习的一大分支 强化学习&#xff08;Reinforcement Learning&#xff09;是机器学习的一种&#xff0c;它通过与环境不断地交互&#xff0c;借助环境的反馈来调整自己的行为&#xff0c;使得累计回报最大。强化学习要解决的是决策问题——求取当前状态下最…

HNU-计算机系统(CSAPP)实验三 BombLab

前言 BombLab来自《深入理解计算机系统》&#xff08;CSAPP&#xff09;一书的第三章“程序的机器级表示”的配套实验&#xff0c;该实验的目的是通过反汇编可执行程序bomb&#xff0c;来反推出程序执行内容&#xff0c;进而能够正确破解“密码”&#xff0c;拆除“炸弹”。 …

【人机交互 复习】第8章 交互设计模型与理论

一、引文 1.模型&#xff1a; 有的人成功了&#xff0c;他把这一路的经验中可以供其他人参考的部分总结了出来&#xff0c;然后让别人套用。 2.本章模型 &#xff08;1&#xff09;计算用户完成任务的时间&#xff1a;KLM &#xff08;2&#xff09;描述交互过程中系统状态的变…

java连接kerberos用户认证以及java连接ldap读取账户信息

文章目录 一、背景二、代码2.1目录2.2配置文件application.properties2.3pom依赖2.4代码AuthProviderConfig配置类CustomConfigurationByKeytab配置类CustomConfigurationByPassword配置类LdapConfiguration配置类TestControllerLdapUser实体类MyCallbackHandlerLdapUserAttrib…

SpringCloudAlibaba组件之间的版本兼容问题

我之前的SpringCloud项目以及使用的组件的版本是这些 但是我不知道具体的版本兼容问题&#xff0c;以及各种组件之间对应的版本 想要使用我们的springcloud和springcloudAlibaba组件&#xff0c;我们就要版本对应&#xff0c;不然就是一堆依赖报错&#xff0c;要不就是缺了这个…

业余时间做跨境电商实现经济自由,我是怎么做的?

在知乎问答上翻阅大家非常感兴趣的问题&#xff0c;解答一些疑惑的同时&#xff0c;发现大家对跨境电商还是很感兴趣的&#xff0c;类似“小白如何入局跨境电商&#xff1f;2024跨境电商平台&#xff0c;哪些值得做&#xff1f;现在电商哪个平台好做?”等的这些主观问题&#…

Java程序员Python一小时速成

背景 由于最近要开发一些AI LLM&#xff08;Large Language Model 大语言模型&#xff09;应用程序&#xff0c;然后又想使用LangChain&#xff08;LangChain 是一个用于构建和操作大语言模型&#xff08;LLMs&#xff09;的框架&#xff0c;旨在帮助开发者更方便地集成和使用…

Vant2组件库的基础应用

目录 一、Picker 选择器 1.1、数组对象处理 1.2、每个选项颜色设置 二、滚动分页加载列表 三、Calendar 日历(可选范围限制) 四、input值过滤 官网&#xff1a;Vant 2 - Mobile UI Components built on Vue 一、Picker 选择器 官网示例数据&#xff1a; columns: [杭州…